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ABSTRACT 

The research presented in this thesis may be divided into three areas: transition metal 

catalysis, graphical user interfaces, and the derivation and application of effective core 

potentials. 

Transition metal catalysis. The titanium catalyzed hydrosilation reaction has been 

examined in detail to determine a possible minimum energy reaction path. Two reactions and 

three catalysts were considered. In addition to a model system consisting of the reaction of 

silane with ethylene, the simplest known experimental reaction involving trichlorosilane and 

ethylene was also examined. In addition to a model catalyst of TiH2, the expermental 

catalysts TiCb, and Ti(C5H5)2 were considered. In all reactions studied the catalyst had a 

dramatic effect on the reaction system changing the overall reaction barrier from over 50 

kcal/mol without the catalyst to a barrierless process with the catalyst. In addition to the 

overall reaction energies, several low energy intermediate structures were predicted which 

might be experimentally observable. 

Graphical user interfaces. A description is given of a new graphical user interface for 

the GAMESS program. This interface includes many feanores useful for interpreting complex 

wavefimctions and reaction systems. These include the ability to animate reaction paths and 

normal modes of vibration, as well as the ability to view molecular orbitals, total electron 

densities, molecular electrostatic potentials, and density differences. 

Effective core potentials. The derivation of an enhanced method for the computation 

of integrals involving effective core potentials is presented and has been implemented in the 

electronic structure code GAMESS. This method has helped produce a large reduction in the 

computational cost of ECPs. It has also enabled the implementation of analytical second 
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derivatives. The new method is also applied to the determination of the minimum energy 

structures of SigCi2, GegCa and SngCia which are main group analogs of the Ti8Ci2 

compounds (known as metcars). Relative energies, geometries, and vibrational frequencies 

are reported for several novel structures. 
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CHAPTER 1: GENERAL INTRODUCTION 

General Overview 

The hydrosilation reaction' is a general and industrially important method of 

producing silicon-carbon bonds and is important in the production of silicon-carbide 

precursors. As with many industrial reactions, very little was known about the mechanism for 

the reaction other than the basic parameters of temperature, reactants and reaction efficiency. 

The goal of the research on this reaction was therefore to answer the questions: "What is the 

minimum energy reaction path?" and "How does the catalyst lower the reaction energy 

barrier?" 

Since the typical experimental system' is quite large, the initial series of calculations 

were performed on a model prototype system, designed by replacing the substituents with 

hydrogen atoms. The smaller model system enabled the assessment of several levels of 

theory such that we could choose the level of theory which gave reasonable accuracy, 

without being prohibitively expensive. Chapter 2 presents the results of this work. Once the 

level of theory necessary to correctly describe the reaction system was established, 

hydrosilation reaction systems that more closely model the experimental reaction were 

examined. These included the experimental reactants trichlorosilane and ethene," as well as 

the experimental catalysts dichlorotitanium and dicyclopentadienyltitanium.^ Chapter 3 

presents the results of these calculations. 

During the work on the hydrosilation reaction it became clear that the existing tools 

were inadequate for visualizing the results of complex reactions involving more than a few 

atoms. The tools that did exist were not designed for real time use and were limited to 

viewing 2D slices of orbitals and densities. This motivated the development of a program 
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that would run on any desktop Macintosh computer. The goal was to present the results of 

calculations in real time to the user without requiring any intermediate data processing steps 

between rurming the computation and viewing the results. In addition, it must be capable of 

visualizing very complex phenomena, including the animation of normal modes of vibration 

and reaction paths, and the computation and visualization of the molecular orbitals, total 

electron density and other complex properties of the wavefunction. The resulting program, 

MacMolPlt, is described in detail in Chapter 4. 

Another important motivation in the development of MacMolPlt was its use as an 

educational tool. When students are beginning to leam the theory and the techniques of 

quantum chemistry, it can be difficult to also leam the intricacies of a large computational 

program. MacMolPlt helps reduce this hurdle by providing a simple interface to generate 

input files, the results of which can then be easily visualized. Having the abilit\' to visualize 

orbitals, even basic atomic orbitals, with 3D models and real-time rotation can greatly 

enhance the understanding of orbital shapes and how orbitals interact to form bonds. Thus. 

MacMolPlt has proven to be a useful tool for a wide range of users from general chemistry 

students on up to experienced quantum chemists. 

The hydrosilation reaction work also demonstrated the cost of accurate calculations. 

Since the most common computational techniques in quantum chemistry scale on the order 

of to N^, where N is the size of the basis set, the cost of a calculation quickly becomes 

prohibitive as the size of the system increases. Thus, quantum chemists are constantly 

searching for ways to reduce the cost of a calculation without reducing the accuracy. One 

technique, known as the Effective Core Potential (ECP) method, replaces the core electrons 

with a potential. Thus, the ECP method directly reduces N and can dramatically speed up 
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calculations, particularly calculations involving fifth and sixth row elements. Unfortunately, 

the existing ECP implementation was inefficient, and lacked analytical second derivatives. 

To correct for these problems we developed and implemented a new ECP code including 

analytical first and second derivatives into the General Atomic and Molecular Electronic 

Structure System"* (GAMESS) package. 

Chapter 5 describes the new ECP implementation along with the determination of the 

minimum energy structures and energetics for 3 metallocarbohedrenes. Compounds with the 

formula MsCii have recently been reported for group 4 transition metals^ (M = Ti, Zr, Hf). 

These compounds are proposed to have a cage structure similar to that found in flillerenes, 

except with a smaller size due the higher percentage of non-carbon atoms. It is reasonable to 

suspect that similar compounds exist using silicon, germanium, and tin instead of the 

transition metal, given the analogous electronic configuration, s"p~ versus s"d". Thus, we 

have used ECPs to examine the structure and electronic configuration of SisC^, GegCii, and 

SngCu. In fact, this work is an excellent example of how ECPs can reduce the cost of 

calculations involving heavy elements. Since all three compounds have exactly the same 

computational cost despite the fact that Ge and Sn have many more electrons than Si. 

Dissertation Organization 

This dissertation is made up of this general introduction, a chapter of general 

conclusions, and four papers that are either published, submitted for publication, or are being 

prepared for submission to peer reviewed journals with myself as the primary author. 
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Chapter 2 presents the results of calculations on a model system for the titanium 

catalyzed hydrosilation reaction. The results establish a base level of theory necessary for 

accurate results as well as presenting a model for the reaction path. 

Chapter 3 expands on the results of Chapter 2 by considering the effects of the 

experimental substituents on the reactants and the catalyst. The results include a good model 

for the simplest experimentally observed hydrosilation reaction. 

Chapter 4 describes the capabilities of the MacMolPlt program. This program 

provides a simple, easy to use interface to help interpret the results of complicated quantum 

mechanical calculations. 

Chapter 5 presents a description and implementation of an improved method for 

computing integrals involving effective core potentials. Also included in Chapter 5 are the 

results of calculation predicting several minimum energy isomers for SigCi:, GesC 12 and 

SngCii. 

Theory 

The goal of quantum chemistry is to solve the complete Schrodinger equation^ as a 

function of position, x, and time, t: 

where H is the Hamiltonian operator and is the total wavefunction. If this equation could 

be solved exactly for a system of interest, we would theoretically know all properties of that 

system as a function of time. In practice, since the potential energy is often time-independent, 

we can usually use the time-independent Schrodinger equation': 

( I )  

(2)  
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Unfortunately this equation can be solved analytically only for one-electron atoms, such as 

the hydrogen atom. Thus in order to obtain a solution we must make a series of 

appro.ximations. The first approximation is to assume that the effects of relativity are 

negligible. While this approximation is accurate for the lighter elements (such as the first 4 

rows of the periodic table), it introduces significant errors into calculations involving heavier 

elements. 

The next approximation made is the Bom-Openheimer approximation.^ This 

approximation assumes that the electrons are moving much faster than the nuclei. Therefore, 

the nuclear repulsion energy can be treated as a constant at a fixed geometry. Equation (1) 

can then be solved for the electronic Hamiltonian: 

The first term represents the electronic kinetic energy, the second term the potential energy 

due to electron-nuclear attraction, and the third the potential energy due to the electron-

electron repulsion. Unfortunately, the third term remains a three-body term, which makes 

equation (2) analytically unsolvable. 

(3) 

In Hartree-Fock theory^"the n-electron system is separated into n one-electron 

equations given by; 

F\(f,=e,w, i=l ,2 ,  . . . ,n  (4) 

where Ej are the orbital energies and F is the Fock operator given by: 

(5) 
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The first term, with the Laplacian operator V", involves differentiation with respect to the 

electronic coordinates giving the electron kinetic energy. The second term, with the atomic 

number of nucleus A. Za, and the distance between the ith electron and nucleus A, riA, gives 

the electron-nucleus attraction. The third term. V"''. represents the average potential 

experienced by electron i due to the other electrons in the molecule. This potential depends 

on the orbitals which may be represented by a linear combination of fimctions, centered 

on the nuclei: 

(6) 
t 

The , referred to as basis functions, are usually gaussian functions, or linear combinations 

of gaussian functions, whose exponents have been predetermined from atomic and simple 

molecular calculations. Since the are centered at the atomic nuclei, they can be considered 

the atomic orbitals. Thus, equation (6) represents a linear combination of atomic orbitals. or 

the LCAO approximation. When the LCAO approximation is introduced into the Hartree-

Fock equations (equation (4)), the exact Hartree-Fock solution is obtained only in the limit of 

a complete basis set. However, it is possible to make a quite good approximation to this limit 

with a carefully selected finite set of orbitals that can also be systematically improved. 

Because the Hartree-Fock equations are dependent on the average potential, V""", 

they are also dependent on the initial orbitals. Therefore, they must be solved iteratively by 

making a guess for the initial orbitals, solving for the new orbitals, and repeating until a 

stable, self-consistent, solution is found. When this method is applied to a closed shell system 

with equal alpha and beta spatial orbitals it is referred to as restricted Hartree-Fock (RHF). 

Open shell calculations, in which the paired electrons have the same spatial orbitals and the 
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unpaired electrons each have their own alpha-spin orbital, are referred to as restricted open-

shell Hartree-Fock (ROHF). 

Unfortunately, Hartree-Fock theory does not account for the correlation of electrons, 

and thus allows electrons to come too close to each other. To correct for this problem 

several methods have been developed. The most commonly used correlation method is 

many-body perturbation theory. In perturbation theory, the effects of electron correlation are 

added back into the Hartree-Fock wavefunction by means of a perturbative treatment, and is 

thus appropriate only if the correlation effects are small. A form used extensively in this 

dissertation is Meller-Plesset second order perturbation theory" (MP2). Higher order 

perturbative methods are also available such as fourth order Moller-Plesset perturbation 

theory'" (MP4), and coupled cluster theory'^ (CCSD(T)). 

For many systems a single electron configuration is inadequate to fully describe the 

properties of the system. For such systems the multi-configuration self-consistent field 

(MCSCF) method'"* is needed. MCSCF variationally includes electron correlation and can 

be combined with a perturbative treatment such as multiconfigurational quasidegenerate 

second order perturbation theory'^ (MCQDPT) to provide accurate results. 

Thus, given enough computer resources, we have the computational methods to solve 

most problems. The great problem is that in order to obtain accurate answers the basis set 

(equation (6)) must have many functions. Unfortunately, all of the computational methods 

mentioned have worse than linear scaling with respect to the number of basis functions. The 

Hartree-Fock method scales the best, but it still scales as approximately M^, where M is the 

number of basis functions. Thus if M doubles the amount of work goes up by a factor of 8. 
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The methods for including correlation usually scale much worse, about for MP2 and M' 

for CCSD(T). 

Given the poor scaling of these methods it would be advantageous if the basis set size 

could be reduced without reducing the accuracy of the calculation. For normal chemical 

processes (no core ionization), it is reasonable to expect that the atomic core orbitals will 

have constant energies and shapes from one system to another. Thus, one way to reduce the 

basis set size would be to replace the core orbitals with a potential. The potential is then 

designed to reproduce the effects of the core electrons on the valence orbitals. In other 

words it is an effective core potential (ECP). 

The ECP can be derived by applying projection operators: 

to include all of the core orbitals we wish to remove, we ensure that when ^1 - P| is applied 

to the remaining valence orbitals the resulting orbitals are orthogonal to the core orbitals'^. 

This allows us to rewrite the electronic hamiltonian (equation (3)) as'^: 

where the core orbitals have been moved into the term and the remaining terms sum 

only over the valence orbitals. By inverting the modified Fock equation (equation (4)), the 

exact form of the core potential can be obtained.'® The potential can then be fit using a 

linear combination of gaussians of the form: 

.V 

and the othogonal complement. — Pj. to the fiill set of molecular orbitals. By defining P 

V If A K'S u-% » 

(8) 

(9) 
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where n represents the angular momentum of the core electrons removed by the potential. 

Similar to regular all electron basis sets, the coefficients and exponents of this linear 

combination are normally determined fi-om calculations on individual atoms. However. 

since the ECP core is frozen, the fit can also be to a fully relativistic calculation on the atom. 

The resulting valence basis set and core potential can then correctly reproduce the 

contraction of the valence orbitals in heavy elements due to relativity. Thus, ECP 

calculations involving heavy elements can actually be more accurate than their all-electron 

counterparts. 

Since is an independent term in equation (8), we can easily separate out the ECP 

contribution to the total energy, which may be written as: 

^ECP ~ {^A \^L + \WR) ^l-i R) (10) 
Im 

where L represents the maximum angular momentum function removed fi*om the core. This 

results in the following types of angular and radial components": 

Q^. ik„k„a) = ] drr'e"'' M,{k,r)M,. {k,r) (12) 
0 

The first equation involving an integral over spherical harmonics, Yim, has a simple analytic 

solution. Unfortunately, the second equation involving an integral over two modified 

spherical bessel functions of the first kind, M^, is not as easy to solve. Chapter 5 will detail 

an improved solution to this integral. 

In addition to the integrals required to compute the ECP contribution to the energy, it 

is also important to be able to compute analytic derivatives of those integrals. This is needed 
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in order to allow for efficient geometry optimizations and frequency calculations. However, 

since the form of the core potential is complex, the derivative of the core potential would be 

quite cumbersome to compute directly. Instead we make use of the principle of translationai 

invariance~° given by: 

<P^ 
dUc \ 
dRc 

<PB )  =  
^<Pa 
dR. 

Uc\(PB)  +  {(PAPC 
dR. 

(13)  

to change derivatives of the potential into derivatives of the basis functions. Note that not 

only is the flmction being differentiated changed, but also the differentiated coordinate. For 

example, the ECP contribution to the gradient may be written as: 

(14) 

Since the derivative of a gaussian function is just another gaussian with a change in the 

angular momentum, the resulting derivatives are merely the sum of standard ECP integrals. 

For example, the derivative of a d-type gaussian results in the following integrals over s-

type and f-type gaussians: 

{d'\U\<l,) = (s\U\(p}-2a{f\U\(p) (15)  

Since the computation of an ECP derivative requires the calculation of several integrals, it is 

important that the integral code be as fast as possible. Thus, we have also improved the 

speed of the integral code by a significant amount. 
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CHAPTER 2: THE CATALYZED HYDROSH^TION REACTION 

A paper published in and reprinted with permission from 

Journal of the American Chemical Society 1998, 120, 1552-1555 

Copyright 1998 American Chemical Society 

Brett M. Bode, Paul N. Day. Mark S. Gordon 

Abstract 

Ab initio electronic structure calculations using RHF, MP2, and CCSD(T) 

wavefimctions have been used to investigate a reaction path for the hydrosilation reaction 

catalyzed by divalent titanium (modeled by TiH,). Optimized structures and energies are 

presented. All levels of theory predict a barrierless reaction path compared to a barrier of 78 

kcal/mol for the uncatalyzed reaction. The use of correlated wavefimctions (MP2 or 

CCSD(T)) is required to obtain accurate structures and energies. 

I. Introduction 

The hydrosilation reaction is a general method of adding an Si-H bond across a C-C 

double bond. This method encompasses a wide variety of substituted alkenes, dienes, and 

alkynes leading to many different organosilicon products. Thus the method is very useful; 

indeed it is the second most important method of producing organosilanes on a large scale.' 

The general hydrosilation reaction may be written as: 

SiRa H 
catalyst | | 

RgSHH + R'nA=BR"n ^  R'^A BR"n 
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One of the simplest examples known experimentally is the addition of trichlorosilane to 

ethylene, which will occur rapidly at room temperature and give nearly 100% yields with a 

variety of homogeneous transition metal based catalysts.-

Several analogous uncatalyzed reactions (HSiClj, SiH_j + ethylene, SiH^ + propene) 

were studied previously^; all were found to have large (>54 kcal/mol) barriers. Thus, the 

catalyst is crucial in making the process economically viable. Industrially one active catalyst 

is believed to be a divalent Cp,Ti species (Cp = The role of Cp,Ti in catalyzing the 

polymerization of primary organosilanes has been studied by Harrod et. al These 

calculations suggest that Cp->Ti exhibits a strong catalytic effect, but due to the size of the 

catalyst only selected points along the reaction path were studied in detail using double ^ and 

triple ^ quality basis sets and density functional theory. The nature of the bridging 

interactions between Ti and C in Ti(C(Si(CH3)3)=C(CgH5)(CH3))(Cp)"^, an intermediate in a 

Ziegler catalyst system, has also been examined. The computed structure matched the 

experimental structure very well, even though the calculations employed fairly low levels of 

theory (RHF waveflmctions with a 3-2IG basis set).^ 

There have been several recent studies on similar catalysts. A study of a silylene-

bridged Cp^Ti and its role in ethylene polymerization^ employed RHF, MP2, and QCISD 

calculations with small basis sets (effective core potentials on the metal and 3-2IG on the 

carbons and hydrogens). The results give a qualitative picture of the reaction path and several 

important structures along it, but the entire path was not examined. The Ziegler-Natta olefin 

polymerization process has been studied by several groups interested in the role of the TiCl, 

catalyst.While these studies do provide a qualitative picture of the process, they all use 

relatively small basis sets and modest levels of theory (RHF and MP2). 
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This paper will consider die simplest prototypical example of a catalyzed 

hydrosilation reaction, in which A and B are carbon; R, R' and R" are hydrogen and the 

catalyst is TiHj. The choice of reactants and catalyst allows mapping the entire reaction path 

at a high level of theory. Particularly, the choice of TiH^ as the catalyst allows the use of 

high-level all-electron ab inito waveflinctions which would not be possible if the more 

complex catalysts such as TiCl, or TiCp, were used. Clearly, subsequent calculations will 

need to address the steric and electronic effects introduced by the CI and Cp substituents. 

Nonetheless, TiH, provides an important baseline for comparison. 

II. Computational Methods 

The minimum energy reaction path connecting reactants to products was determined 

using all electron ab initio waveflinctions. The basis set used was a triple-^ quality valance'® 

plus 1 d-type polarization fimction on C, Si and 1 p-type polarization function on the 

hydrogens.'' 

The reaction path was determined by first optimizing the structures of the minima 

and transition states (TS) using analytic gradients and a modified Newton-Raphson algorithm. 

Each stationary point was confirmed by computing the matrix of energy 2nd derivatives, or 

hessian, to obtain the harmonic normal modes and corresponding firequencies (each minimum 

has zero and each transition state has one imaginary mode). The calculated firequencies were 

also used to obtain the harmonic zero-point energies used to convert energy differences to 0 

K enthalpy differences. Finally the path connecting each TS to the nearest minima on each 

side of the TS was computed using the Gonzalez-Schlegel 2nd order intrinsic reaction 

coordinate path (IRC) method'- with a step size of 0.3 amu'''--bohr for the first TS and 0.05 
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amu'^--bohr for the second TS. 

The path was initially optimized at the restricted Hartree-Fock (RHF) level of theory, 

then refined using Moller-Plesset second order perturbation theory (MP2). Single-point 

energies were computed at the MP2 optimized stationary points using coupled cluster singles 

and doubles plus perturbative triples (CCSD(T)). 

The GAMESS'^ program was used for all of the RHF calculations and a portion of 

the MP2 optimizations. The Gaussian 92 suite of programs'** was used for the remainder of 

the MP2 calculations and the CCSD(T) calculations. 

III. Results and Discussion 

Figure 1 shows the energy profile of the proposed catalyzed reaction. The zero of 

energy on the curve for each level of theory is the sum of the reactant energies at that level of 

theory (structures a, b, and c in Fig. 2). The MP2 structures at each stationary point are 

given in Fig. 2'^. The MP2 and CCSD(T) total energies and the MP2 vibrational zero point 

energy (ZPE) corrections for each geometry point marked in Fig. I and 2 are available as an 

appendix to this chapter. MP2 and CCSD(T) ZPE corrected energies are listed relative to the 

zero of energy in Table I. 

It is important to note that all points on the energy plot in Fig. 1 lie below the energy 

of the reactants, in contrast to the large barrier in the uncatalyzed reaction. Note also that 

there are large differences between the SCF and MP2 energy profiles, while the differences 

between MP2 and CCSD(T) are much smaller. So, electron correlation is essential for a 

correct description of this reaction surface, and MP2 is qualitatively correct. 

There are two possibilities for the first step of the reaction, both of which are 
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barrieriess processes. The first, and more exothermic, is to add the TiHT catalyst across the 

ethylene double bond to form the three membered ring compound shown in Fig. 2d. This 

process is downhill in energy by 61.9 (53.4) kcal/mol at the ZPE corrected MP2 (CCSD(T)) 

level of theory. Note that, based on the large exothermicity and the large (0.016 A) increase in 

the CC bond length, structure d is a three-membered ring, not a n complex. Silane will then 

add to form the complex depicted in Fig. 2e. This second barrieriess addition is downhill by 

6.5 (6.0) kcal/mol. 

The electronic structure of TiH, was considered in detail previously.'^ Like CH-,, the 

ground state is a triplet, and the lowest singlet state is 21 kcal/mol higher in energy. Since 

TiH, has an electronic structure similar to singlet CH, or SiH^, (sM- vs. s-p-) a reasonable 

expectation is that an alternative mechanism would stzirt with an insertion of TiH, into an Si-

H bond of silane. Indeed, this occurs with no barrier to produce structure d'. a Ti-Si analog of 

ethane. This step is downhill by 31.9 (27.8) kcal/mol. When ethylene is added to this 

compound, it rearranges with no barrier to the same structure as in Fig. 2e. 

So, whether the TiH^ catalyst adds to ethylene or silane initially, the net result after 

the two reactants and the catalyst have been added together is the formation of compound e, 

with no intervening barrier. The overall exothermicity to this point is 68.4 (59.4) kcal.mol. 

This very large drop in energy drives the entire reaction path down in energy. In fact the 

reaction path is forced down enough that all subsequent points are below the reactants in 

energy. 

Recall that the final desired product is ethylsilane. So, starting from compotmd 2e, the 

silyl group needs to migrate to the nearest (a) carbon, and a hydrogen needs to be transferred 

to the adjacent (P) carbon, with the ultimate removal of the TiHj catalyst. Therefore, the next 
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step in the reaction is to transfer a H from the complexed silane to the Ti and to attach the Si 

to the a C. 

The first part of this step involves rotation of the silane such that there are 2 bridging 

hydrogens between the Si and Ti; that is e->g via fin Figs. 1 and 2. At the MP2 level there is 

a small barrier (at structure f) of 1.7 kcal/mol to this process, but after the ZPE corrections 

are added the barrier disappears. The reaction then proceeds through transition state h with a 

barrier of 5.3 (8.2) kcal/mol, leading to the four-membered ring shown in Fig. 2i. This ring is 

5.9 (6.6) kcal/mol below the TS h. The four membered ring can be opened up by breaking the 

Si-Ti bond to give the compound k. The TS for this step is shown in Fig. 2j. It has a barrier 

height of 3.2 (1.2) kcal/mol. Compound k is 1.4 (2.1) kcal/mol below the TS j. 

The final step in the process is to regenerate the catalyst by transfer of a hydrogen 

from Ti to C and elimination of TiH,. The transition state for this process is shown in Fig. 21; 

the associated barrier height is 31.9 (25.7) kcal/mol. This TS is still 33.5 (31.1) kcal/mol lower 

in energy than the initial reactants. The IRC from this TS leads to the structure shown in Fig. 

2m which is 5.2 (5.9) kcal/mol below the TS. The structure shown in Fig. 2m is not a 

stationary point, but it illustrates that the reaction path goes through a structure in which the 

TiH, is complexed to two hydrogens. Optimization from this point leads to the insertion of 

TiH, into an Si-H bond, as shown in Fig. 2n. The insertion product is 25.7 (22.2) kcal/mol 

below the TS in energy. However, the TiH, in Fig. 2m is not tightly bound to the ethylsilane 

as evidenced by both the relatively long Ti-Si and Ti-H bond distances and the fact that it is a 

modest 11.0(11.6) kcal/mol in energy below separated products. Thus we do not expect a 

transition state for the process of simply abstracting the TiH2 to form separated products. 

This can occur readily due to the excess energy available to the system, since the separated 
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products are 28.0 (25.4) kcal/mol below the reactants in energy. Note that the reverse barriers 

for elimination of singlet CH^ from methane and singlet SiH, from silane are ~ zero.'^ It is 

also much less likely that the catalyst will insert when both the catalyst and the silyl group 

have more bulky substituents such as CI or Cp rings. 

Once TiHj is removed, the process is complete with ethylsilane as the product. The 

overall process is exothermic by 28.0 (25.4) kcal/mol at the ZPE corrected MP2 (CCSD(T)) 

level of theory. This compares with the value of 29.1 kcal/mol computed by Day and 

Gordon^ at the MP2/6-31 lG(d,p) level of theory and a value of 27.4 kcal/mol computed by 

McDouall et. al. at the MP4/6-31G(d)//HF/3-21G level of theory. There does not seem to 

be a good experimental for this reaction, but we can estimate the value to be 28.9 

kcal/mol based on the experimental heats of formation for ethene and silane," and the best 

previous theoretical heat of formation for ethylsilane.-® 

The driving force for the entire reaction comes in the first two steps with the 

formation of the compound shown in Fig. 2e which is 68.4 (59.4) kcal/mol below the 

reactants in energy and is the global minimum on the reaction surface. The reasons this 

structure is so stable are illustrated by the first two steps in the reaction. In the first step the 

electron deficient TiH, adds to the ethene across the n bond in much the same manner as the 

addition of CH, to ethylene to form cyclopropane. The second step is much less exothermic 

and is driven mostly by the electrostatic attraction between the positively charged titanium 

(+0.83) and the negative hydrogen (-0.12) on the silicon. 
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IV. Conclusions 

The results presented here clearly show that divalent titanium is an effective catalyst 

for the hydrosilation reaction. Further work, currently in progress, will examine the effect of 

substitution on catalyst and reactants, but even the simple model catalyst. TiH-,, used here 

clearly shows strong catalytic behavior. The overall catalyzed reaction has no net barrier, 

because of the very stable cyclic TiH^CH^CH^ intermediate. However, the energy profile of 

the multistep process (Fig. 1) does offer the possibility of finding some of the intermediate 

structures if the process was carried out at low temperature. 
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Table 1: MP2 and CCSD(T) relative energies (kcal/mol) with ZPE correction 

Geometry point MP2 + MP2 ZPE CCSD(T) + MP2 ZPE 

a+b+c (reactants) 0 0 

d'+b -31.1 -27.8 

d+c -61.9 -53.4 

e -68.4 -59.4 

f -66.6 -57.8 

g -66.6 -57.4 

h -61.3 -49.2 

i -67.2 -55.8 

j -64.0 -54.6 

k -65.4 -56.8 

1 -33.5 -31.1 

m -39.0 -37.0 

n -59.2 -53.3 

o+a (products) -28.0 -25.4 
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Figure 1: RHF, MP2, and CCSD(T) Energies 
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Figure 2: MP2 structures along the minimum energy reaction path 
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Figure 2: Continued. 
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Appendix 

MP2 and CCSD(T) total energies (in Hartrees) 

Geometry point MP2 CCSD(T) MP2 ZPI 

a -849.523689 -849.558595 0.007380 

b -78.350167 -78.388712 0.051503 

c -291.367241 -291.396783 0.032340 

d' -1140.941807 -1141.000986 0.041009 

d -927.976820 -928.036620 0.063141 

e -1219.357669 -1219.446391 0.098847 

f -1219.354932 -1219.443927 0.098939 

g -1219.356058 -1219.444445 0.100075 

h -1219.348157 -1219.431893 0.100614 

i -1219.357310 -1219.442124 0.100291 

j -1219.349955 -1219.437991 0.098052 

k -1219.351630 -1219.440864 0.097549 

1 -1219.302084 -1219.401222 0.098800 

m -1219.314969 -1219.414914 0.103070 

n -1219.344683 -1219.438353 0.100531 

o -369.770333 -369.834273 0.092168 

Fig. 2a: 

Ti 22.0 

H 1.0 

H 1.0 

Fig 2b: 

C 6.0 

C 6.0 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

1.85751 

-1.85751 

0.00000 

0.00000 

0.01455 

-0.16011 

-0.16011 

0.00000 

1.33420 
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H 1.0 0.92095 

H 1.0 -0.92095 

H l.O 0.92095 

H 1.0 -0.92095 

Fig 2c: 

Si 14.0 0.00000 

H 1.0 0.85112 

H 1.0 -0.85112 

H 1.0 -0.85112 

H 1.0 0.85112 

Fig 2d: 

Ti 22.0 -0.75328 

C 6.0 1.15258 

C 6.0 1.15389 

H 1.0 -1.57672 

H 1.0 -1.58794 

H 1.0 1.47334 

H 1.0 1.47338 

H 1.0 1.47648 

H 1.0 1.47472 

Fig 2e: 

C 6.0 0.00000 

C 6.0 0.00000 

0.00000 -0.56413 

0.00000 -0.56413 

0.00000 1.89833 

0.00000 1.89833 

0.00000 0.00000 

0.85112 0.85112 

-0.85112 0.85112 

0.85112 -0.85112 

-0.85112 -0.85112 

-0.00028 0.00010 

0.74494 -0.00086 

-0.74442 0.00001 

0.00186 1.53734 

-0.00135 -1.53226 

1.24414 -0.91146 

1.24461 0.90945 

-1.24261 0.91041 

-1.24349 -0.91062 

0.00000 0.00000 

0.00000 1.47230 
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Ti 22.0 1.94598 0.00000 0.66971 

H 1.0 -0.29841 -0.91292 -0.50901 

H 1.0 -0.28919 0.91361 -0.51308 

H 1.0 -0.30839 0.91870 1.96470 

H 1.0 -0.35958 -0.89759 1.96888 

H 1.0 2.73996 -1.53409 0.41951 

H l.O 2.72915 1.54487 0.45418 

Si 14.0 2.12669 -0.32911 3.80391 

H 1.0 1.20298 0.74146 4.19473 

H 1.0 2.76619 -0.00219 2.48145 

H 1.0 3.29348 -0.36718 4.70299 

H 1.0 1.48851 -1.64853 3.73042 

Fig2f: 

C 6.0 0.00000 0.00000 0.00000 

C 6.0 0.00000 0.00000 1.46720 

Ti 22.0 1.97067 0.00000 0.60347 

Si 14.0 2.30005 -0.00351 3.29852 

H 1.0 -0.27693 -0.91406 -0.51838 

H 1.0 -0.27712 0.91390 -0.51856 

H 1.0 -0.34887 -0.90523 1.95508 

H 1.0 -0.34806 0.90568 1.95504 

H 1.0 2.41857 -1.14752 2.33255 

H 1.0 2.70599 -1.48744 0.08798 
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H 1.0 2.70536 1.48863 0.09053 

H 1.0 3.53202 -0.00516 4.10688 

H 1.0 1.11085 -0.00384 4.15427 

H 1.0 2.42006 1.14291 2.33554 

Fig 2g: 

C 6.0 0.00000 0.00000 0.00000 

C 6.0 0.00000 0.00000 1.47080 

Ti 22.0 1.95546 0.00000 0.64183 

Si 14.0 2.31328 -0.45634 3.47019 

H l.O -0.28919 -0.91510 -0.51043 

H 1.0 -0.28039 0.91144 -0.52092 

H 1.0 -0.38705 -0.88643 1.96349 

H 1.0 -0.29691 0.92467 1.95906 

H 1.0 2.15538 -1.63643 2.58905 

H 1.0 2.84038 -1.42768 0.16633 

H 1.0 2.61907 1.56791 0.30430 

H 1.0 3.53009 -0.59407 4.28719 

H 1.0 1.13594 -0.15624 4.29001 

H 1.0 2.62211 0.64869 2.49765 

Fig 2h: 

C 6.0 0.00000 0.00000 0.00000 

C 6.0 0.00000 0.00000 1.46967 

Ti 22.0 2.02424 0.00000 0.40507 
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Si 14.0 1.80765 

H 1.0 -0.28995 

H 1.0 -0.30152 

H 1.0 -0.46390 
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H 1.0 2.34942 

H 1.0 2.69724 

H 1.0 2.73766 

H 1.0 2.67777 

H 1.0 0.85379 

H 1.0 2.59709 

Fig 2i; 

C 6.0 0.00000 

C 6.0 0.00000 

Ti 22.0 2.04070 

Si 14.0 1.54489 

H 1.0 -0.39984 

H 1.0 -0.33956 

H 1.0 -0.62185 

H 1.0 -0.35549 

H 1.0 1.93691 

H 1.0 2.87280 

H 1.0 2.09440 

-0.17259 2.87880 

-0.91347 -0.51179 

0.91703 -0.49820 

-0.86691 1.93421 

0.92523 1.92836 

-1.19408 1.72081 

-1.40954 -0.32716 

1.50968 -0.07396 

-0.90378 3.83621 

0.48616 3.81066 

0.90750 2.12531 

0.00000 0.00000 

0.00000 1.51570 

0.00000 0.18316 

-0.42358 2.66192 

-0.89015 -0.47502 

0.92668 -0.45531 

-0.82319 1.87698 

0.94501 1.91810 

-1.56678 0.94415 

-0.24317 -1.34381 

1.62669 0.77810 
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H 1.0 1.56461 

H 1.0 1.42732 

H 1.0 2.83123 

Fig2j: 

C 6.0 0.46725 

C 6.0 -0.90428 

Ti 22.0 1.13445 

Si 14.0 -1.67358 

H 1.0 0.41127 

H 1.0 0.99250 

H 1.0 -1.65722 

H 1.0 -0.90245 

H 1.0 1.38451 

H 1.0 2.68112 

H 1.0 0.32219 

H 1.0 -2.61542 

H 1.0 -2.34323 

H 1.0 -0.58419 

Fig 2k: 
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Ti 22.0 1.99890 

Si 14.0 1.01141 

-1.76676 3.25667 

0.53740 3.78398 
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0.38133 -0.03025 
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H 1.0 -0.47177 

H 1.0 -0.47653 

H 1.0 -1.01677 

H 1.0 0.42742 

H 1.0 2.43231 

H 1.0 2.10495 

H 1.0 2.95873 

H 1.0 2.11026 

H 1.0 1.62396 

H 1.0 0.22215 

Fig 21: 

C 6.0 0.00000 

C 6.0 0.00000 

Ti 22.0 2.26199 

Si 14.0 0.98399 

H 1.0 -0.19491 

H 1.0 -0.81226 

H 1.0 -1.00627 

H 1.0 0.49796 

H 1.0 2.90730 

H 1.0 0.83756 

H 1.0 3.16153 

H 1.0 2.19694 

0.89608 -0.41784 

-0.88238 -0.43622 

0.06060 1.93805 

-0.92420 1.93226 

1.48604 -1.27898 

-1.15771 -1.79665 

-0.68521 0.73495 

1.62321 1.11023 

1.34860 3.45777 

2.72935 2.03312 

0.00000 0.00000 

0.00000 1.53940 

0.00000 -0.28365 

1.52691 2.02113 

0.99029 -0.43160 

-0.63076 -0.36898 

-0.01126 1.96467 

-0.89862 1.91565 

0.74599 -1.76068 

-0.84884 -0.64791 

-1.01623 0.86297 

1.50541 1.10849 
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H 1.0 1.51048 1.60041 3.39357 

H 1.0 0.26208 2.75549 1.64571 

Fig 2m: 

C 6.0 0.00000 0.00000 0.00000 

C 6.0 0.00000 0.00000 1.53692 

Ti 22.0 2.69344 0.00000 0.08633 

Si 14.0 1.10140 1.40473 2.14497 

H l.O -0.04045 0.99948 -0.43191 

H 1.0 -0.85125 -0.55266 -0.39632 

H 1.0 -1.01490 0.11485 1.92151 

H 1.0 0.36845 -0.95477 1.91449 

H 1.0 3.31671 0.73100 -1.46679 

H 1.0 0.83295 -0.57519 -0.46180 

H 1.0 2.98004 -1.48783 1.10494 

H 1.0 2.52619 1.27445 1.58528 

H 1.0 1.32002 1.43052 3.60087 

H 1.0 0.58887 2.69834 1.65661 

Fig 2n: 

C 6.0 2.22770 -1.31559 0.24591 

C 6.0 2.10510 0.04018 -0.45865 

Ti 22.0 -1.61814 -0.27378 -0.04059 

Si 14.0 0.63320 1.07832 0.14873 

H 1.0 2.29794 -1.19808 1.32688 
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H 1.0 3.11462 -1.85287 -0.08776 

H 1.0 3.01469 0.62483 -0.30460 

H 1.0 2.00714 -0.10444 -1.53570 

H l.O -1.45196 -1.41704 1.22798 

H 1.0 1.36534 -1.95041 0.04064 

H 1.0 -1.46083 -0.92722 -1.62176 

H 1.0 -2.84307 0.90975 0.17370 

H 1.0 0.52275 2.33646 -0.63579 

H 1.0 0.83760 1.45059 1.57492 

Fig 2o: 

C 6.0 0.00000 0.00000 0.00000 

C 6.0 0.00000 0.00000 1.53350 

Si 14.0 1.73746 0.00000 2.26971 

H 1.0 1.68863 0.00050 3.74790 

H 1.0 2.47762 -1.20015 1.81872 

H 1.0 2.47545 1.20002 1.81942 

H 1.0 -1.01460 -0.00027 -0.39616 

H 1.0 0.50793 0.87970 -0.39389 

H 1.0 0.50827 -0.87947 -0.39395 

H 1.0 -0.53698 -0.87394 1.90667 

H 1.0 -0.53742 0.87367 1.90667 
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CHAPTER 3: THE CATALYZED HYDROSHATION REACTION: 

SUBSTTTUENT EFFECTS 

A paper accepted for publication in Theoretical Chemical Accounts 

Brett M. Bode, Mark S. Gordon 

Abstract 

Ab initio electronic structure calculations using MP2 wavefunctions have been used to 

investigate a reaction path for the hydrosilation reaction catalyzed by divalent titanium 

(modeled by TiH2, TiCb, and Ti(C5H5)2). Optimized structures and energies are presented. 

All model reactions predict a barrierless reaction path compared to a barrier of 78 kcal/mol for 

the uncatalyzed reaction. 

I. Introduction 

The hydrosilation reaction is a general method for adding an Si-H bond across a C-C 

double bond. This method encompasses a wide variety of substituted alkenes, dienes, and 

alkynes leading to many different organosilicon products. Thus the method is very useful; 

indeed it is the second most important method of producing organosilanes on a large scale [1]. 

The general hydrosilation reaction may be written as: 

catalyst | 

^ R'nA BR", RgSi-H + R'nA=BR"n 
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One of the simplest examples known experimentally is the addition of trichlorosilane to 

ethylene, which will occur rapidly at room temperature and give nearly 100% yields with a 

variety of homogeneous transition metal based catalysts [2]. 

Several analogous uncatalyzed reactions (HSiCl3, SiH4 + ethylene, SiH4 + propene) 

were studied previously [3]; all were found to have large (>54 kcal/mol) barriers. Thus, the 

catalyst is crucial in making the process economically viable. Industrially one active catalyst 

is believed to be a divalent TiCp2 species (Cp = C5H5). The role of TiCp-? in catalyzing the 

polymerization of primary organosilanes has been studied by Harrod et. al [4]. These 

calculations suggest that TiCp2 exhibits a strong catalytic effect, but due to the size of the 

catalyst only selected points along the reaction path were studied in detail using double ^ and 

triple ^ quality basis sets and density functional theory. The nature of the bridging 

interactions between Ti and C in Ti(C(Si(CH3)3)=C(C5H5)(CH3))(Cp)"'"') an intermediate in 

a Ziegler catalyst system, has also been examined. The computed structure matched the 

experimental structure very well, even though the calculations employed fairly low levels of 

theory (RHF wavefunctions with a 3-2IG basis set) [5]. 

There have been several recent studies on similar catalysts. A study of a silylene-

bridged TiCp2 and its role in ethylene polymerization [6] employed RHF, MP2, and QCISD 

calculations with small basis sets (effective core potentials on the metal and 3-2IG on the 

carbons and hydrogens). The results give a qualitative picture of the reaction path and several 

important structures along it, but the entire path was not examined. The Ziegler-Natta olefin 

polymerization process has been studied by several groups interested in the role of the TiCl^ 
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catalyst [7,8,9]. Similar structures were also found in a study of the McMurry reaction 

involving the TiCb catalyzed reductive coupling of carbonyl compounds [10]. While these 

studies do provide a qualitative picture of the process, they all use relatively small basis sets 

and modest levels of theory (RHF and MP2). 

In a previous paper [II] we considered the simplest prototypical example of a 

catalyzed hydrosilation reaction, in which A and B are carbon; R. R" and R'' are hydrogen and 

the catalyst is TiH2. The choice of reactants and catalyst allowed mapping the entire reaction 

path at a high level of theory (MP2 geometries plus CCSD(T) energetics). From this baseline 

work it was determined that the MP2 level of theory was adequate to determine both the 

reaction energies and the optimized geometries. Preliminary calculations on the effect of Cl-

substitution on the hydrosilation reaction have recently been reported [12]. 

In this paper, we will examine the simileirities and differences between the model 

system in our previous work and the actual experimental systems: the reaction studied will be 

ethylene + trichlorosilane, the simplest experimental system. The catalysts will include the 

model catalyst from our previous work. TiH2, the catalyst used in model studies of many 

similar reactions, TiCl2. and finally the catalyst believed to be involved in the experimental 

reaction system, TiCp-;). 

II. Computational Methods 

In our previous work the minimum energy reaction path connecting reactants to 

products was determined using all electron ab initio wavefunctions with a basis set of triple-^ 
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plus polarization quality. To examine the effects of substituents we required a more 

computationally efficient basis set capable of similar accuracy to our previous work. 

We first tried using an SBKJC Effective Core Potential [13] (ECP) basis on C, Si, CI. 

Ti and a 6-3 lG(p) basis set on hydrogen. The SBKJC basis set was extended with one d-

type polarization function on each C, Si, and CI [14]. This basis set was evaluated by 

reoptimizing the stationary points in the reaction path from our previous work. As shown in 

Figure 1, the SBKJC basis set tracks the triple ^ basis, but it overestimates the exothermicity 

by 7-8 kcal/mol over most of the reaction path leading to an rms deviation of 6.7 kcal/mol. 

However, it was found that the rms difference drops to 0.5 kcal/mol when the C ECP basis 

set is replaced with a 6-31G(d) basis set (see Figure 1). Thus we have used a 6-3 lG(d,p) [15] 

basis set on H and C. and the SBKJC ECP basis on Si, CI, and Ti extended with one d-type 

polarization function on Si and CI. 

All calculations were performed using closed shell Msller-Plesset second order 

perturbation theory (MP2) as implemented in the GAMESS [16] program. The reaction 

paths involving TiH-^ and TiCl-? were determined by first optimizing the structures of the 

minima and transition states (TS) using analytic gradients and a modified Newton-Raphson 

algorithm. Each stationary point was confirmed by computing the matrix of energy second 

derivatives (hessian), to obtain the harmonic normal modes and corresponding fi-equencies 

(each minimum has zero and each transition state has one imaginary mode). The calculated 

frequencies also provide the harmonic zero-point energies used to convert energy differences 

to 0 K enthalpy differences. Finally the path connecting each TS to the nearest minimum on 

each side of the TS was computed using the Gonzalez-Schlegel second order intrinsic reaction 
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coordinate path (IRC) method [17] with a step size of 0.3 amu^^^-bohr for the first TS and 

0.05 amu^''~-bohr for the second TS. For the reaction path involving TiCp2 selected 

stationary points were reoptimized as noted above. The TS was also confirmed by 

computing its hessian. Due to the high computational cost of the large TiCpo reaction 

system, hessians, eind thus ZPE corrections, were not performed on the minima. 

III. Results and Discussion 

Figure 2 shows the energy profile of each of the reaction systems. The zero of energy 

on the curve for each reaction is the sum of the reactant energies (structures a, b, and c) for 

that reaction. The MP2 structures at each unique stationary point are given separately for the 

catalysts TiH2, TiCb- and TiCp2 in Figures 3,4 and 5 respectively [18], Animations of the 

IRCs shown in Fig. 2 are available as supplementary material [19]. Structures that are 

identical for all three reactions, structures b, c. and o, are shown only in Fig. 3. The MP2 total 

energies and the MP2 vibrational zero point energy (ZPE) corrections for each geometry 

point marked in Figs. 2-5 are available as supplementary material. MP2 ZPE corrected 

energies are listed relative to the zero of energy in Table 1. Note that MP2 ZPE corrections 

were not performed on many of the geometeries involving TiCp2 due to the high 

computational cost. 

It is important to note that all points on the energy plot in Fig. 2 lie below the energy 

of the reactants, in contrast to the large barrier in the uncatalyzed reactions. In addition, all 

three reaction systems in the current study exhibit quite similar stationary points, although 

there are some differences in the energetics of the reactions. The following text will lay out 
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the reaction in detail for TiCl2, shown in Fig. 4, noting the differences in the TiH2 and TiCp^ 

reactions where appropriate. 

There are two possibilities for the first step of the reaction, both of which are 

barrierless processes. The first, and more exothermic, is to add the catalyst across the 

ethylene double bond to form the three membered ring compound shown in Fig. 4d. This 

process is downhill in energy by 59.6 kcal/mol at the ZPE corrected MP2 level of theory. 

Note that, based on the large exothermicity and the large (O.ISA) increase in the CC bond 

length, structure d is a three-membered ring, not a n complex. Silane will then add to form the 

complex depicted in Fig. 4e. This second barrierless addition is downhill by 5.3 kcal/mol. 

In our previous work (reference 11) we found an alternative pathway with TiH^ 

adding to SiH4 first. This addition resulted in a Ti insertion into an Si-H bond. However, the 

subsequent addition of C2H4 resulted in a barrierless rearrangement to structure e. In the 

present study using SiCl3H instead of SiH4, neither TiCb nor TiHo inserted into the Si-H 

bond. Instead, a simple complex is formed as shown in structure d'. Since there is no 

insertion, the addition of SiCl3H to TiCl-) (or TiH')) is much less exothermic than the addition 

of SiH4 (10.6 kcal/mol versus 31.1 kcal/mol). Just as in the previous work, once C9H4 is 

added the complex spontaneously rearranges to structure e. Since neither TiCl9 nor TiH9 

inserted into the Si-H bond, it is unlikely that TiCp^ would insert. Thus an optimization of a 

structure similar to d' using TiCp2 was not attempted. 

The net result after the two reactants and the catalyst have been added together is the 

formation of compound e, with no intervening barrier in either of the two possible routes. 
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The overall exothermicity to this point is more than 60 kcal/mol in all the systems studied 

driven predominately by the addition of the catalyst to ethylene. This very large drop in 

energy drives the entire reaction path down in energy. In fact, the reaction path is forced 

down enough that all subsequent points are below the reactants in energy. 

Recall that the final desired product is ethyltrichlorosilane. So, starting from 

compound 4e, the silyl group needs to migrate to the nearest (a) carbon, and a hydrogen 

needs to be transferred to the adjacent (P) carbon, with the ultimate removal of the catalyst. 

Therefore, the next step in the reaction is to transfer a H from the complexed silane to the Ti 

and to attach the Si to the a C. 

In our previous study, it was found that the system went through a small barrier to 

structure g which has the silane rotated such that there are two bridging hydrogens. However, 

the small barrier went to zero when ZPE corrections were added. For SiCl3H, a similar 

minimum would have one bridging hydrogen and one bridging chlorine. However, no such 

minimum could be found for any of the catalysts studied. Thus, it is likely that the TS 

represented by structure f in the previous study simply does not exist for the reaction 

involving SiCl3H. 

In the model system studied previously a small (5.3 kcal/mol) barrier was found 

which connected structure e (through structure g) to structure i. For reaction III a similar TS, 

shown in Figure 4h, has been located 6.3 kcal/mol in energy above strucnire e. The IRC's 

from the TS are shown in Fig. 2. They illustrate the extreme flatness of the surface in the TS 

region, which is the reason the correct TS is so difficult to locate. The IRC leading towards 

the products for structure h stops after 11 steps and after lowering the energy by 0.006 
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kcal/mol due to a very small gradient. Optimizations from the end of the IRC show that there 

might be two possible results of this step. The first is the desired structure i for which a 

reaction path has been constructed using a constrained optimization and an internal 

coordinate based linear least motion path. The highest point on this path connecting structure 

e with stmcture i is less than 6.5 kcal/mol (without ZPE correction). The second outcome 

shows that the transfer of a CI from the Si to the Ti may be a competitive path to the desired 

reaction path. However, the mechanism for this step reduces the bond angle between the two-

Cl's on Ti to 106° during the reaction. Since Cp rings are much larger, steric hindrance is 

likely to prevent this process in the mechanism of this step for the real catalyst,TiCp9. 

After going through the first TS the reaction proceeds to form the four-membered ring 

shown in Figure 4i, which is 0.8 kcal/mol above structure 4e. The four membered ring can be 

opened by breaking the Si-Ti bond to give structure 4k. The barrier for the model all-

hydrogen system (I) is 3.2 kcal/mol. Structure 4k lies 6.4 kcal/mol lower in energy than 

structure 4j and is the global minimum on the reaction siuface at 70.5 kcal/mol below the 

reactants in energy. Since 4k is lower in energy than 4i, it is likely the barrier is also lower 

than for the model reaction (I). Because it is unlikely that structure j is qualitatively 

important to the overall reaction path, no attempt was made to locate it for the more complex 

reactions. 

The final steps in the mechanism are to regenerate the catalyst by transfer of a 

hydrogen from Ti to C and then to eliminate the catalyst. The transition state for this process 

is shown in structure 41; the associated barrier height is 26.0 kcal/mol. Note, however, that 

diis TS is still 44.5 kcal/mol lower in energy than the initial reactants. 
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In our previous work, the IRC for system I from this TS toward the products was 

found to proceed through a structure m, in which the catalyst is complexed to the ethylsilane 

product, then to structure n, in which the titanium inserts into one of the Si-H bonds. Since, 

for SiCl3H there are no remaining Si-H bonds, the IRC leads to the expected structure n with 

no corresponding intermediate insertion product. The complex 4n lies 7.3 kcal/mol below the 

TS and 14.6 kcal/mol below the seperated products in energy. From structure n it is quite 

straightforward to remove the catalyst from the complex. 

Once the catalyst is removed, the process is complete with ethyltrichlorosilane as the 

product. The overall process is exothermic by 37.2 kcal/mol at the ZPE corrected MP2 level 

of theory. This compares with the value of 37.1 kcal/mol computed by Day and Gordon at 

the MP2/6-31 lG(d,p) level of theory. 

The driving force for the entire reaction comes in the first two steps with the 

formation of the compound shown in structure e, which is 64.9 kcal/mol below the reactants 

in energy. The reasons this structure is so stable are illustrated by the first two steps in the 

reaction. In the first step the electron deficient catalyst adds to the ethylene across the K 

bond in much the same manner as the addition of CH2 to ethylene to form cyclopropane. The 

second step is much less exothermic and is driven mostly by the electrostatic attraction 

between the positively charged titanium (+0.47) and the negative hydrogen (-0.09) on the 

silicon. 
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IV. Conclusions 

The results presented here clearly show that divalent titanium is an effective catalyst 

for the hydrosilation reaction. All four reaction systems studied show qualitatively the same 

behavior. The most significant change made was the substitution of 3 chlorines for 3 

hydrogens. This substitution prevented the unwanted insertion of titanium into Si-H bonds, 

but did not alter the qualitative aspects of the reaction path. The effect of the substituents on 

the titanium is smaller. While there is some change in the energetics, particularly with TiCp-?, 

there are not any qualitative changes in the main reaction path. 

The overall catalyzed reaction has no net barrier, because of the very stable cyclic 

TiX-)CH2CH7 intermediate. However, the energy profile of the multistep process (Fig. 2) 

does offer the possibility of finding some of the intermediate structures if the process was 

carried out at low temperature. 
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Table 1: MP2 relative energies (kcal/mol). The first three reactions include an MP2 ZPE 

correction. Those involving TiCp2 are not ZPE corrected. 

Geometry point 

I 
TiHi + SiH; + 

C2H4 

II 
TiHz + SiClsH 

+ C2H4 

in 
TiCl2+ SiCljH 

+ C2H4 

IV 
TiCp2+ SiClsH 

+ C2H4 
a + b + c 0 0 0 0 
(reactants) 
d' + b -31.1 -8.3 -10.6 
d + c -61.9 -61.8 -59.6 -47.2 
e -68.4 -66.2 -64.9 -61.2 
f -66.6 
g -66.6 
h -61.3 -58.6 
i -67.2 -70.0 -64.1 
j -64.0 
k -65.4 -74.3 -70.5 -72.1 
1 -33.5 -42.3 -44.5 -42.0 
m -39.0 
n -59.2 -46.9 -51.8 -51.4 
0 + a (products) -28.0 -37.2 -37.2 -41.6 
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Figure 1: Comparison of TZVP versus SBK ECP basis sets 



www.manaraa.com

a+b+c 

• TiH^+SiH^+C^H^ 

O TiH2+SiCl3H+C2H^ 

A TiCL+SiCLH+C,H, 
" 2 3 2 4 

o TiCP,+SiCLH+C^H, 
^ 2 3 2 4 

"^3 -40 

J 
I  I  I  1  " I  ' 1  I  ' •  I  I  I  I  I  I  «  «  «  I  I  r  I  •  »  »  I  I  I  1  1  I  I  j  I  I  1  I  I  I  I  I  T  ' I "  J "  

-40 -30 -20 -10 0 10 20 30 40 50 
Intrinsic Reaction Coordinate 

Figure 2: MP2 reaction energy profiles 
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Figure 3: MP2 structures along the minimum energy reaction path 
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2.052 
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Figure 4: MP2 structures along the minimum energy reaction path using TiCl 
the catalyst 
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Figure 4: Continued 
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H-Ti: 3.148 
e 

Figure 5: MP2 structures along the minimum energy path using TiCP2 as the catalyst 
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Figure 5: Continued 
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Appendix: 

MP2 Total Energies in Hartrees for each reaction system: 

Geometry point 
II III IV 

TiH, -f- SiCl,H + CH, TiCK+ SiCl,H + CH^ TiCp,+ SiCUH + C.H^ 
a 
b 
c 
d' 
d 
e 
f 
a o 

-58.582174 
-78.317282 
-49.032702 
-107.631227 
-137.002133 
-186.043342 

-186.051765 

-87.281162 
-78.317282 
-49.032702 

-136.331341 
-165.694824 
-214.737267 

-214.729192 
-214.737830 

-443.436587 
-78.317282 
-49.032702 

-521.829078 
-570.884121 

m 
n 
o 

-186.055543 
•186.005280 

•186.017059 
•127.416311 

-214.744744 
-214.705339 

-214.711832 
-127.416311 

-570.901434 
-570.853483 

-570.868503 
-127.416311 
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MP2 zero point energy (ZPE) corrections (in Hartrees): 

Geometry point 
11 

TiH, + SiCl,H + C.H, 
UI 

TiCl,+ SiCI,H + 
IV 

TiCp,+ SiCI,H + C,H^ 
a 
b 
c 
d' 
d 
e 
f 

0.007098 
0.052344 
0.014483 
0.024627 
0.063675 
0.079623 

0.002153 
0.052344 
0.014483 
0.017300 
0.055931 
0.071703 

0.052344 
0.014483 

g 
h 
i 
j 
k 
1 
m 
n 
0 

0.082053 
0.073700 
0.073437 

g 
h 
i 
j 
k 
1 
m 
n 
0 

0.078838 
0.079660 

0.070207 
0.072182 0.242016 

g 
h 
i 
j 
k 
1 
m 
n 
0 

0.084093 
0.073828 

0.077192 
0.073828 0.073828 

Cartesian Coordinates for each stationary point along the reaction II: TiH^ + SiHj + C2H4 

Point a: 

Ti 22.0 0.00534 0.00000 0.00050 

H 1.0 -0.12771 0.00000 1.86208 

H 1.0 0.22164 0.00000 -1.85324 

H 1.0 0.22164 0.00000 -1.85324 

Point b: 

C 6.0 0.00000 0.00000 0.66763 

C 6.0 0.00000 0.00000 -0.66763 

H 1.0 0.00000 0.92079 1.23332 

H 1.0 0.00000 -0.92080 1.23329 

H 1.0 0.00000 0.92079 -1.23332 
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H 1.0 0.00000 

Point c: 

Si 14.0 -0.01229 

H 1.0 0.83374 

CI 17.0 -1.13657 

CI 17.0 -1.25299 

CI 17.0 1.17243 

Point d: 

Ti 22.0 0.00006 

C 6.0 0.74254 

C 6.0 -0.74310 

H 1.0 0.00215 

H 1.0 0.00036 

H I.O 1.24605 

H 1.0 1.24593 

H 1.0 -1.24654 

H 1.0 -1.24616 

H 1.0 -1.24616 

Point d': 

Si 14.0 -0.06888 

H 1.0 0.90471 

CI 17.0 -1.27516 

CI 17.0 -1.18898 

59 

-0.92080 -1.23329 

0.23776 0.10182 

1.10056 0.92945 

-0.97774 1.31296 

1.39974 -1.04656 

-0.91238 -1.11553 

0.75244 -0.00003 

-1.15250 O.OOOlO 

-1.15239 -0.00002 

1.58254 1.53396 

1.58374 -1.53351 

-1.46977 -0.91057 

-1.46927 0.91101 

-1.47025 0.91046 

-1.46975 -0.91092 

-1.46975 -0.91092 

-1.45594 1.62863 

-1.98251 2.57435 

-2.94783 0.91955 

0.08280 2.33563 
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CI 17.0 0.97906 

Ti 22.0 2.86347 

H 1.0 2.26279 

H l.O 4.21994 

Point e: 

C 6.0 -3.07200 

C 6.0 -1.99062 

Ti 22.0 -1.27970 

Si 14.0 1.45240 

H 1.0 -3.78882 

H 1.0 -3.50432 

H 1.0 -1.68711 

H 1.0 -1.98670 

H 1.0 -1.03137 

H 1.0 -0.57351 

H 1.0 0.71234 

CI 17.0 1.39030 

CI 17.0 3.37257 

CI 17.0 0.67809 

Point i: 

C 6.0 -0.11724 

C 6.0 -0.04897 

Ti 22.0 1.93840 

-0.77371 -0.10351 

0.70873 0.96967 

0.29541 2.63533 

1.69906 0.27382 

-0.20051 0.10894 

0.43682 0.88915 

-1.09680 -0.30909 

-0.14649 1.47620 

-0.81859 0.64568 

0.36166 -0.71662 

1.44016 0.59816 

0.27849 1.96464 

-2.66197 0.42125 

-0.62287 -1.83183 

-0.75906 0.35403 

1.88591 1.31201 

-0.81556 1.26777 

-0.76756 3.25729 

-0.17349 -0.03912 

0.18845 1.42051 

0.02255 -0.02548 
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Si 14.0 1.48128 

H 1.0 -0.51771 

H 1.0 -0.50755 

H 1.0 -0.70549 

H 1.0 -0.28343 

H 1.0 1.74677 

H 1.0 2.49748 

H 1.0 1.68370 

CI 17.0 1.39189 

CI 17.0 1.22372 

CI 17.0 3.48764 

Point k: 

C 6.0 -1.30965 

C 6.0 -0.21767 

Ti 22.0 -2.03525 

Si 14.0 1.33854 

H 1.0 -0.98678 

H 1.0 -2.21081 

H 1.0 0.02184 

H 1.0 -0.51920 

H 1.0 -1.94590 

H 1.0 -3.72740 

H 1.0 -1.91402 

-0.45387 2.48602 

-1.15509 -0.27375 

0.61211 -0.68459 

-0.47571 2.00055 

1.21832 1.66312 

-1.38923 1.08623 

-0.37402 -1.62265 

1.69274 0.14608 

-2.29278 3.43578 

0.82421 4.13596 

0.28704 1.93692 

1.71473 0.52557 

1.70157 1.60763 

-0.18007 0.03471 

0.93571 0.92822 

2.23298 -0.38479 

2.22470 0.88942 

2.70301 1.97865 

1.10870 2.47596 

-0.68589 -1.59996 

0.06856 0.07330 

-1.30265 1.32965 
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CI 17.0 0.71173 

CI 17.0 2.66826 

CI 17.0 2.28613 

Point I: 

C 6.0 -1.31272 

C 6.0 -0.25699 

Ti 22.0 -1.93316 

Si 14.0 1.30602 

H 1.0 -0.88488 

H 1.0 -1.87818 

H 1.0 0.00306 

H 1.0 -0.63258 

H 1.0 -2.73058 

H 1.0 -2.45708 

H 1.0 -1.96026 

CI 17.0 0.64124 

CI 17.0 2.49004 

CI 17.0 2.41421 

Point n: 

C 6.0 -1.38645 

C 6.0 -0.01726 

Ti 22.0 -1.88328 

Si 14.0 1.32123 

-0.75243 -0.15810 

0.31307 2.35665 

2.17659 -0.40310 

1.86278 0.34717 

1.79850 1.47311 

-0.35288 0.19748 

0.98746 0.87682 

1.92795 -0.66077 

2.78978 0.46542 

2.79240 1.84717 

1.23365 2.33371 

-0.87342 -1.30169 

1.22731 0.55599 

-1.17915 1.77292 

-0.63243 -0.30603 

0.22544 2.35831 

2.21025 -0.33850 

1.86163 1.23182 

1.90482 1.92068 

-0.19186 -0.49871 

0.93625 1.04343 
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H 1.0 -1.32421 

H I.O -2.03955 

H 1.0 0.35056 

H 1.0 -0.09253 

H 1.0 -1.71295 

H 1.0 -1.91088 

H 1.0 -3.03941 

CI 17.0 0.52623 

CI 17.0 2.90746 

CI 17.0 1.95208 

Point o: 

C 6.0 -1.93251 

C 6.0 -0.92943 

Si 14.0 0.84317 

CI 17.0 2.10593 

CI 17.0 1.09415 

CI 17.0 1.38576 

H 1.0 -2.94731 

H 1.0 -1.73527 

H 1.0 -1.89030 

H 1.0 -1.13945 

H 1.0 -0.98596 

2.02769 0.14852 

2.64630 1.60954 

2.93152 1.97731 

1.53548 2.94444 

0.59498 -2.15684 

0.92792 1.46639 

-1.15906 0.55987 

-0.90280 0.39764 

0.52062 2.26878 

1.92404 -0.63375 

-0.27912 0.20303 

0.77351 0.68441 

0.19483 0.63693 

1.68248 1.30211 

-1.46320 1.83759 

-0.31319 -1.28689 

0.11191 0.25124 

-0.56964 -0.82729 

-1.17509 0.81973 

1.07234 1.71337 

1.67627 0.07285 
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Cartesian Coordinates for each stationary point along the reaction III: TiCU+ SiCljH + C2H4 

Point a: 

Ti 22.0 0.00000 0.00000 0.00000 

CI 17.0 0.00000 0.00000 -2.30481 

CI 17.0 0.00000 0.00000 2.30481 

Points b and c: same as reaction II 

Point d: 

Ti 22.0 -0.35268 0.55413 0.11218 

C 6.0 0.59426 -1.25311 0.08911 

C 6.0 -0.87976 -1.41157 -0.03471 

CI 17.0 -0.61268 1.37473 2.16199 

CI 17.0 -0.29905 1.59111 -1.85368 

H 1.0 1.19683 -1.46253 -0.79064 

H 1.0 1.05469 -1.55962 1.02451 

H l.O -1.41296 -1.82534 0.81703 

H 1.0 -1.27095 -1.72750 -0.99809 

Point d*: 

Si 14.0 -0.12410 -1.61285 1.55149 

H 1.0 1.01897 -1.75245 2.45042 

CI 17.0 -0.63914 -3.40625 0.72606 

CI 17.0 -1.71875 -0.74067 2.46205 

Ci 17.0 0.48816 -0.36144 -0.03363 

Ti 22.0 2.65739 0.82309 0.92011 
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CI 17.0 

CI 17.0 

Point e: 

C 6.0 

C 6.0 

Ti 22.0 

Si 14.0 

H 1.0 

H 1.0 

H l.O 

H 1.0 

CI 17.0 

CI 17.0 

H 1.0 

CI 17.0 

CI 17.0 

CI 17.0 

Point h: 

C 6.0 

C 6.0 

Ti 22.0 

Si 14.0 

H 1.0 

1.72388 

4.36771 

-2.36859 

-1.39767 

-0.48768 

2.05543 

-3.07011 

-2.77072 

-1.14647 

-1.44998 

-0.34928 

0.31916 

1.37712 

1.84486 

4.01704 

1.28037 

0.05727 

0.02531 

2.07181 

1.80199 

-0.32574 

1.64867 

-0.03160 

0.05988 

0.56628 

-0.63692 

0.27213 

-0.70579 

0.75826 

1.62279 

0.16571 

-2.79453 

0.44117 

-0.34758 

2.29685 

-0.25617 

-0.47946 

0.28622 

-0.08685 

-0.08333 

0.08318 

-0.41092 

2.86857 

-0.36107 

-0.33220 

0.65366 

-0.76586 

1.32990 

-0.01283 

-1.06081 

0.61390 

1.66240 

-0.23783 

-2.53775 

0.17210 

1.23775 

1.13254 

3.05774 

-0.00026 

1.40503 

0.33742 

2.94774 

-0.73806 
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H 1.0 -0.09592 

H 1.0 -0.32238 

H 1.0 -0.39663 

H 1.0 2.82176 

CI 17.0 2.24247 

CI 17.0 3.31144 

CI 17.0 3.43068 

CI 17.0 0.30506 

CI 17.0 2.03515 

Point i: 

C 6.0 -0.09556 

C 6.0 0.02572 

Ti 22.0 1.98593 

Si 14.0 1.44441 

H 1.0 -0.51590 

H 1.0 -0.47534 

H 1.0 -0.69532 

H 1.0 -0.06199 

H I.O 1.64764 

CI 17.0 2.82401 

CI 17.0 2.14744 

CI 17.0 1.10512 

CI 17.0 1.22900 

1.33613 -0.23870 

-1.09084 1.62889 

0.66444 2.05820 

-0.52696 1.84090 

-2.15315 -0.34083 

1.26423 -0.87918 

-0.30411 4.21476 

-0.27064 4.35789 

2.09938 2.38141 

0.44339 -0.09407 

0.65075 1.38392 

0.57074 -0.01790 

-0.36820 2.33078 

-0.50617 -0.40868 

1.29322 -0.65651 

0.02001 1.92456 

1.67157 1.74388 

-1.01125 0.77415 

-0.38010 -1.80273 

2.79120 -0.04783 

-2.33336 2.87367 

0.58636 4.18796 
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CI 17.0 3.50281 

Point k: 

C 6.0 -1.01178 

C 6.0 0.20754 

Ti 22.0 -1.89040 

Si 14.0 1.75859 

H 1.0 -0.92811 

H l.O -1.93489 

H 1.0 0.38741 

H 1.0 0.07352 

CI 17.0 -1.46207 

H 1.0 -3.51770 

CI 17.0 -1.88165 

CI 17.0 1.50510 

CI 17.0 3.38944 

CI 17.0 2.09681 

Point I: 

C 6.0 -1.02175 

C 6.0 0.03785 

Ti 22.0 -1.40476 

Si 14.0 1.67053 

H 1.0 -0.61000 

H 1.0 -1.73560 

67 

0.26847 1.96306 

0.79482 0.57673 

0.81675 1.49283 

-0.90022 -0.18861 

0.27671 0.60044 

1.49174 -0.26491 

1.05499 1.12994 

1.81790 1.89750 

0.14327 2.34243 

-1.20145 -2.31707 

-0.41720 -0.21022 

-2.47109 1.34215 

-1.66363 -0.06051 

0.34764 1.84840 

1.47850 -1.03361 

1.06096 -0.00541 

1.18747 1.11145 

-1.17583 -0.25220 

0.47432 0.57303 

1.22059 -1.00893 

1.87765 0.12897 
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H l.O 0.21298 

H 1.0 -0.28664 

CI 17.0 -2.21797 

H 1.0 -2.14276 

CI 17.0 -1.45993 

CI 17.0 1.16981 

CI 17.0 2.85471 

CI 17.0 2.72877 

Point n: 

C 6.0 -1.08658 

C 6.0 0.32023 

Ti 22.0 -1.39097 

Si 14.0 1.71078 

H 1.0 -1.16744 

H 1.0 -1.82343 

H 1.0 0.50236 

H 1.0 0.42211 

CI 17.0 -1.44333 

H 1.0 -1.40977 

CI 17.0 -2.27215 

CI 17.0 1.17159 

CI 17.0 3.44890 

CI 17.0 2.01335 

2.23419 1.37796 

0.68003 2.02247 

-1.69496 -2.28322 

0.26022 0.13275 

-2.24628 1.73193 

-1.18650 -0.63990 

-0.21008 2.09003 

1.76578 -0.61521 

0.97219 0.98847 

1.34751 1.46932 

-1.42504 -0.24944 

0.46764 0.57771 

0.94585 -0.10489 

1.70335 1.31619 

2.41375 1.31900 

1.153 II 2.53792 

-0.78033 -2.46142 

0.03322 1.45205 

-2.66119 1.49039 

-1.55045 0.29388 

0.47767 1.65692 

1.26518 -1.27897 
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Point o: Same as reaction II 

Cartesian Coordinates for each stationary point along the reaction IV: TiCp2+ SiCljH + C^H^ 

Point a: 

Ti 22.0 -0.21757 0.00009 0.00000 

C 6.0 0.36857 1.16509 1.83514 

C 6.0 -0.94326 0.70601 2.15400 

C 6.0 -0.94323 -0.70598 2.15403 

C 6.0 0.36861 -1.16502 1.83521 

C 6.0 1.20367 -0.00004 -1.63631 

C 6.0 0.36859 1.16504 -1.83511 

C 6.0 -0.94326 0.70599 -2.15395 

C 6.0 -0.94322 -0.70598 -2.15404 

C 6.0 0.36863 -1.16503 -1.83527 

C 6.0 1.20364 -0.00002 1.63628 

H 1.0 0.69554 2.19303 1.83629 

H 1.0 -1.80631 1.33202 2.33054 

H 1.0 -1.80627 -1.33205 2.33058 

H 1.0 0.69554 -2.19299 1.83635 

H 1.0 2.27587 -0.00008 -1.52349 

H 1.0 0.69560 2.19302 -1.83630 

H 1.0 -1.80631 1.33200 -2.33044 

H 1.0 -1.80625 -1.33207 -2.33057 
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H 1.0 0.69555 -2.19302 -1.83642 

H 1.0 2.27586 -0.00001 1.52347 

Points b and c: Same as reaction II 

Point d: 

Ti 22.0 -0.04818 -0.04008 -0.09574 

C 6.0 0.08129 1.64853 1.62053 

C 6.0 -0.87495 0.72520 2.13126 

C 6.0 -0.24878 -0.53085 2.29898 

C 6.0 1.11365 -0.41588 1.89531 

C 6.0 1.76096 0.33292 -1.50561 

C 6.0 0.91989 1.50848 -1.55819 

C 6.0 -0.30929 1.13685 -2.17509 

C 6.0 -0.25332 -0.23587 -2.50615 

C 6.0 1.01265 -0.74916 -2.10237 

C 6.0 1.33616 0.94610 1.46688 

H 1.0 -0.08212 2.70287 1.46257 

H 1.0 -1.92163 0.93181 2.30787 

H 1.0 -0.73713 -1.43695 2.62308 

H 1.0 1.86259 -1.18815 1.98083 

H 1.0 2.80462 0.31010 -1.23098 

H 1.0 1.20171 2.50726 -1.26577 

H 1.0 -1.16587 1.78128 -2.31534 

H 1.0 -1.05921 -0.80966 -2.93956 
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H 1.0 1.37690 

H 1.0 2.29167 

C 6.0 -1.11848 

C 6.0 -2.08990 

H 1.0 -1.03594 

H 1.0 -1.19406 

H 1.0 -2.74557 

H 1.0 -2.61237 

Point e: 

Ti 22.0 -2.00438 

C 6.0 -3.34441 

C 6.0 -2.78355 

C 6.0 -1.38301 

C 6.0 -1.07208 

C 6.0 -2.47828 

C 6.0 -3.70225 

C 6.0 -3.57618 

C 6.0 -2.28506 

C 6.0 -1.60705 

C 6.0 -2.28027 

H 1.0 -4.39277 

H 1.0 -3.31981 

H 1.0 -0.66888 

-1.74814 -2.29187 

1.39374 1.23985 

-1.77593 -0.14935 

-0.65167 -0.23786 

-2.39128 -1.04312 

-2.41472 0.72528 

-0.50738 0.61374 

-0.51657 -1.17925 

0.22437 1.79736 

0.58152 3.65661 

-0.71125 3.82683 

-0.55946 3.97732 

0.81857 3.91423 

2.16057 0.61569 

1.43705 0.73709 

0.23485 -0.00291 

0.21343 -0.58166 

1.40036 -0.21203 

1.53303 3.70598 

0.80854 3.54684 

-1.64713 3.81628 

-1.36061 4.07851 
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H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

C 6.0 

C 6.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

Si 14.0 

H 1.0 

CI 17.0 

CI 17.0 

CI 17.0 

-0.08162 

-2.27628 

-4.57531 

-4.31416 

-1.87003 

-0.60638 

-2.38647 

-0.22429 

-1.40225 

0.21906 

0.53497 

-1.43475 

-1.72320 

1.86788 

0.42043 

2.68630 

2.66626 

2.31118 

1.23712 

3.13417 

1.76148 

-0.54972 

-0.58569 

1.66515 

2.60438 

-0.89390 

-1.79835 

-0.72082 

-1.05111 

-2.52907 

-2.23321 

2.20861 

2.29801 

0.98053 

4.09433 

1.50604 

3.99107 

1.03482 

1.28025 

-0.07713 

-1.17374 

-0.51110 

3.63666 

1.28666 

1.31993 

0.30987 

2.04755 

2.12298 

0.37821 

1.56515 

1.74296 

2.98931 

1.77642 

-0.30950 

Point k: 

Ti 22.0 -1.84123 

C 6.0 -1.67910 

C 6.0 -0.94324 

-0.57754 -1.24471 

-0.15563 -3.59344 

0.85728 -2.92465 
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C 6.0 

C 6.0 

C 6.0 

C 6.0 

C 6.0 

C 6.0 

C 6.0 

C 6.0 

H l.O 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

H 1.0 

C 6.0 

C 6.0 

Si 14.0 

H 1.0 

H 1.0 

0.14681 

0.07028 

-1.05392 

-1.68338 

-2.90376 

-3.73971 

-3.02409 

-1.75937 

-2.56156 

-1.19721 

0.88802 

0.76923 

-1.36788 

-0.84653 

-3.15898 

-4.74259 

-3.38255 

-0.98243 

-1.43988 

-0.90869 

0.94452 

-0.98166 

-2.52653 

0.25151 

-1.14747 

-1.39450 

-2.82790 

-2.68540 

-1.79576 

-1.37886 

-2.01957 

-0.00604 

1.90610 

0.76080 

-1.88310 

-2.35906 

-3.44551 

-3.17242 

-1.50763 

-0.68588 

-1.91010 

1.06705 

1.03329 

0.85941 

1.90281 

1.27367 

-2.25691 

-2.47642 

-3.31540 

-0.50686 

-1.21990 

-0.49567 

0.65610 

0.65191 

-4.19350 

-2.90301 

-1.66406 

-2.11144 

-3.68168 

-0.79330 

-2.14778 

-0.76132 

1.40143 

1.38966 

0.13410 

1.56734 

1.63492 

-0.39652 

0.15322 
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H 1.0 -1.12428 

H 1.0 -1.32571 

H I.O -3.32830 

CI 17.0 1.62781 

CI 17.0 1.61545 

CI 17.0 1.85806 

Point 1: 

C 6.0 -1.33275 

C 6.0 -1.03008 

Si 14.0 0.77452 

H 1.0 -0.79342 
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H 1.0 -3.90722 -0.43156 -1.06013 

H 1.0 -2.82995 0.03181 1.39192 

H 1.0 -1.22136 -2.01664 1.99383 

Point o: Same as reaction 11 
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CHAPTER 4; MACMOLPLT: A GRAPHICAL USER INTERFACE FOR 

GAMESS 

A paper submitted to the Journal of Molecular Graphics & Modelling 

Brett M. Bode and Mark S. Gordon 

Abstract 

A description of MacMolPIt, a graphical user interface for the General Atomic and 

Molecular Electronic Structure System, GAMESS, is presented. Major features include an 

input builder for GAMESS; display and animation of molecular structure, normal modes of 

vibration, reaction paths, orbitals, total electron densities, molecular electrostatic potentials, 

and density differences. The strategy for direct computation of orbital, total electron density 

and molecular electrostatic potential surfaces is discussed. 

Introduction 

In recent years as the speed of computers has increased and the computational 

methods improved, the complexity of molecular systems studied has steadily increased. 

Hence, the need for better tools to analyze the results produced by general electronic 

structure programs such as GAMESS' or Gaussian 94." Indeed several commercial programs, 

Chem3D,^ HyperChem,"* Spartan^ and XMol*^ for example, now have an interface to 

Gaussian 94. 

Since GAMESS is one of the most widely used ab initio quantiun chemistry 

programs, MacMolPIt has been developed to provide a user-friendly graphical interface to 

view the results from GAMESS calculations. MacMolPIt provides a range of visualization 
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options that are useful to any user. The simple, intuitive interface is particularly useful for 

introducing novice users to GAMESS. Thus, Mac Mo IP It is useful in a variety of classroom 

settings, from teaching students the basic orbital shapes and orbital interactions in their first 

chemistry course, to introducing the techniques of quantum chemistry to advanced students 

without requiring an in depth knowledge of GAMESS. MacMolPlt is also very useful to 

advanced GAMESS users providing insights into complex problems through the use of 

animations and the visualization of complex 2D and 3D surfaces such as orbitals, total 

electron densities, or molecular electrostatic potentials. 

The remainder of this article is organized as follows: A description of the general 

capabilities of MacMolPlt is followed by more in depth discussions of the most significant 

features: supported file formats, GAMESS input generator, direct computation of surfaces, 

and output visualization. Special emphasis is placed on features that are unique to 

MacMolPlt. 

Program Overview 

The primary goal in the development of MacMolPlt was to provide a program to help 

analyze GAMESS output that is useful for both novices and advanced users. To aid the 

novice user MacMolPlt also includes an optional input generator for GAMESS that allows 

the user to set up most of the common GAMESS input options. The advanced user may 

create input files by hand, perform the calculation and then use MacMolPlt to analyze the 

results. Thus, MacMolPlt is capable of analyzing results from calculations which are too 

complex to be set up with the built-in input generator. 
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For flexibility, MacMolPlt can visualize information from a variety of file formats for 

input and output. These include all of the files used by GAMESS as well as several other 

formats as discussed in the section on input file formats. In addition to files, MacMolPlt also 

allows the user to copy and paste molecular coordinates in several formats, providing a quick 

way to visualize molecular structures. Input can contain as little as a single atom in one 

geometry, to many hundreds of atoms in a series of hundreds of geometries, each potentially 

containing normal modes of vibration and several forms of molecular orbitals. While the 

current focus of development has been to provide an interface to GAMESS, there is no 

reason that the results of other programs, such as Gaussian 94, could not also be visualized 

once the code to interpret the proper file formats is added. 

Memory is allocated dynamically in MacMolPlt. Thus, there are no compile time 

limits on any significant parameter including the number of atoms, the number of geometries, 

and the number of basis functions. This flexibility is made possible by an object oriented 

code design. The design allows each geometry point, or frame, to be independent of the other 

frames. Thus, frames can be easily added or removed and each frame may contain different 

types and amounts of data. For instance, only the first and last frames in an optimization 

normally contain molecular orbital vectors (MOs) and only the last frame will contain 

localized orbitals. 

The most powerful features of MacMolPlt come from its output visuali2:ation. Not 

only can the visualization of output be crucial to a correct interpretation of the results, but it 

can also provide a valuable educational tool. MacMolPlt is tuned to providing real-time 

visualization with modest hardware requirements. This makes it possible to load onto a 

standard laptop computer to present results at scientific meetings or in classrooms for 
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educational demonstrations. In addition to direct onscreen visualization, MacMolPlt can 

produce output in variety of formats suitable for both hardcopy and web based publication. 

This is discussed in detail in the section on output file formats. 

The output files from GAMESS are read directly and presented for the user to choose 

which parts to visualize. Visualization options include simple structures, series of structures, 

normal modes of vibration, molecular orbitals, total electron densities, density differences, 

and molecular electrostatic potentials. All surface visualization options are implemented 

directly in MacMolPlt so no further batch processing is required. Since some visualization 

options require enough CPU time to prevent their being considered truly real time, 

MacMolPlt allows the user to easily specify the display quality. Thus the user can compute 

surfaces and images to a low resolution for daily work, and then increase the resolution for 

publication quality output. This also allows users to tune the graphics level to the 

performance of their individual computers, from a ten year old computer to today's high end 

computer with 3D hardware graphics acceleration. 

Input File Formats 

MacMolPlt supports several te.xt file formats for input. These include the three 

primary GAMESS output files (log file, dat file and ire file, described below), GAMESS 

input files, MolPlt mol files, XMol XYZ files, and Protein Data Bank (PDB) files. The last 

three formats provide compatibility with other programs, but typically include only basic 

structural information and possibly normal modes. Additional information such as energetics 

and molecular orbitals currently must come from GAMESS output files. The file parsing 

code is designed to automatically determine the type of the file selected for reading. Thus the 
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user is not required to do any hand editing of the input file or perform any intermediate steps 

in order to read in the results of a GAMESS calculation. 

The GAMESS output file containing the most information (the "usual" output for an 

electronic structure calculation) is the log file. Therefore, it is from the log file that 

MacMolPlt reads most of the results of the GAMESS calculation: initial geometry, basis set. 

GAMESS control parameters, molecular waveftmction. normal modes of vibration, localized 

molecular orbitals, plus all geometries computed as the result of a molecular optimization, 

intrinsic reaction coordinate (IRC), or dynamic reaction path (DRP) calculation. Results from 

IRC and DRP calculations, which may take several computational runs to complete, can be 

easily merged into one file. 

In addition to the GAMESS log file MacMolPlt also reads information from the 

GAMESS ire and dat files. The ire file contains the basic structure and energy information 

for IRC and DRP calculations. Since these calculations usually result in large numbers of 

geometries it is advantageous to store only the ire file since it is much smaller than the log 

file for the same run. The dat file is used by GAMESS to store formatted information that 

would be useful to restart a calculation, such as molecular orbitals, gradient, and hessian. 

MacMolPlt uses the dat file as an alternative source for the molecular orbitals. 

MacMolPlt also reads in the input files for the MolPlt program, a 2D X-windows 

program included with GAMESS. These files contain the molecular structure and optionally 

one or more vibrational normal modes. For compatibility with other programs the XMol style 

XYZ format can be used. The XYZ format is very compact, including only the cartesian 

coordinates and possibly a single vibrational normal mode. Multiple geometries may be 

concatenated together, so it is a useful format for transferring a reaction animation from one 
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program to another. Finally, files in the Protein Data Bank can also be used for input, though 

only the basic atomic coordinates are used by MacMolPh. 

Output File Formats 

There are two purposes to the output file formats provided by MacMolPlt. The first is 

to create input files for GAMESS. This feature of MacMolPlt will be discussed in detail in 

the section on GAMESS Input Generation. The second purpose is to provide high quality 

graphics for publication either on the web or as hardcopy. 

Hardcopy may be produced by two options. First the desired image may be copied 

and pasted into another application for annotation before printing. This method works well 

for 2D vector graphics, but can problematic for bitmaps, since many applications cannot 

handle the very large bitmaps (possibly several megabytes in size) needed to produce 

acceptable quality when printed. The user may also print directly to any printer, or to a 

postscript file suitable for later printing on any postscript printer. 

Publication on the web has somewhat different requirements than hardcopy output. 

The graphics resolution on the web is usually limited to 72 dots per inch (dpi), and the size of 

the images must be kept to a minimum to ensure a reasonable download time. To achieve 

small file size MacMolPlt uses three different file formats. The first is the XYZ format. As 

described in the previous section, the XYZ format is quite compact and very useful for 

transferring one or more structures between programs or for web display. The downside of 

this format is that the publisher has little control over what the viewer sees since the image is 

rendered upon download. The viewer must also have a browser plugin installed capable of 

viewing XYZ files. 
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To provide images viewable on a wider variety of computers MacMoIPlt makes use 

of the QuickTime software libraries/ Using QuickTime, MacMoiPlt can produce still images 

in either the QuickTime movie format or in the jpeg still image format. MacMoIPlt also 

exports animations, including normeil mode animations and reaction path animations, into 

QuickTime movie format. Movies of reaction path animations can include a simple X-Y plot 

of the energy or other property such as bond lengths or bond angles. The graph gives the 

viewer a better imderstanding of how the currently viewed structure relates to the other points 

in the animation. To help minimize the size of the movie file, MacMoIPlt makes use of both 

spatial (per frame) and temporal (based on a series of frames) compression. 

Input Generation 

MacMoIPlt incorporates a basic input generator to aid users, particularly novice users, 

to produce input files for GAMESS. However, the use of the input builder is completely 

optional. MacMolPlt's ability to correctly parse GAMESS output files is not dependent on 

the use of the input builder. Figure 1 illustrates the basic interface of the input builder. 

Currently many, but not all GAMESS input groups have been programmed into the input 

builder. The input groups that are present allow the user to specify the type of waveflmction, 

basis set, type of run (optimization, IRC, saddle point search, etc), molecular parameters 

(charge, multiplicity, symmetry, etc), and various other options which affect how GAMESS 

runs the calculations (amount of memory, maximum CPU time, etc). In addition, the input 

builder can provide assistance to even advanced users by making it easy to include groups 

such as optimized MO vectors from a previous calculation, or a list of Z-matrix variables 
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which tend to be tedious to input by hand. The molecular structure can also be easily 

modified making it easy for the user to create an isomer or add substituents. 

As the user makes choices such as the waveflmction type, MacMolPlt adjusts the 

available options to be consistent with the capabilities of GAMESS. For example, if the run 

type is set to optimize and the SCF type to restricted open shell Hartree-Fock (ROHF) the 

option to use Meller-Plesset second order perturbation theory (MP2) will be disabled since 

GAMESS cannot currently perform gradients with MP2 wavefunctions. However, if the SCF 

type is set to RHF and MP2 is also selected then an additional group will appear in the 

optional groups list for setting MP2 specific options. These optional groups, when selected, 

provide a pane with a list of options that normally default to an appropriate setting, but still 

might be of interest. For example, if the user desires to reduce disk space usage they can 

choose the SCF Options pane and turn on the Direct SCF option. 

As a further aid to the new GAMESS user, the input builder also provides online help 

by means of the balloon help system. When activated via a menu item, helpful messages are 

displayed next to the item the cursor is currently over. The help message includes a brief 

description of the option along with the GAMESS group and keyword corresponding to this 

option. For example the help text for the "Use MP2" option shown in Fig. 1 is: 

"$CONTRL:MPLEVL - Click to use 2nd order Moller-Plesset perturbation theory. 

Implemented for RHF energies and gradients and open shell energies." Thus the user can 

easily associate keywords in the resulting input file with selections in the interface. This also 

provides information to the user regarding where to find more detailed information in the 

GAMESS manual. 
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Surfaces 

The four supported surface types in MacMoIPlt are Orbitals, Total Electron Densities 

(TED), Molecular Electrostatic Potentials (MEP), and any general grid of data read in from a 

file. Each of the supported surface types can be viewed as either a 2D contour map in a user-

defined plane, or as a 3D isosurface. Each surface is independent of all other surfaces both 

within the same frame and for different frames, although it is quite easy to apply the same 

surface parameters across all frames creating an animation of that surface. In addition a 

single frame can have multiple surfaces of the same or different types. While any number of 

surfaces can be visible at the same time, it is unusual for more than two or three surfaces to 

be visually useful at once. A more useful advantage to having multiple surfaces is to set up 

surfaces with the optimum settings, then make them invisible. Later, they can be shown 

quickly one at time for presentation purposes. The surface display is independent of the 

surface type and is discussed in more detail in the next section. One key feature of 

MacMolPIt is that all 3 major surface types are computed directly by MacMolPlt on the local 

CPU(s). This means that the user can visualize any desired surface without waiting on a 

batch process or other intermediate step. 

The orbital surface supports the following types of orbitals: atomic orbitals (AOs), 

molecular eigenvectors including UHF alpha and beta sets and MCSCF or GVB optimized 

and natural orbitals, and localized molecular orbitals. Figure 2 illustrates the options 

available for 2D orbital surfaces. Figure 3 illustrates a corresponding contour map in the 

plane of the CH2 molecule. The user is free to choose any orbital from any of the orbital sets 

that have been read in from GAMESS output. The example in Fig. 2, which is an MCSCF 

calculation on CHi, includes the MCSCF natural and optimized orbitals and the atomic 
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orbitals as specified in the basis set. For MOs the user may list the orbital occupation 

numbers, as shown in Fig. 2, or the orbital energies. The orbital symmetries are also shown if 

they are known. One particularly nice feature is that when the user selects a molecular 

orbital, the MO vector is listed. This allows users to see the orbital visually and observe how 

the orbital is numerically constructed from the individual atomic basis functions. 

The total electron density surface type is available for any calculation that included 

the natural orbitals (the orbitals for which the density matrix is diagonal) in the output such 

that the orbital occupations are known. Since the goal is to achieve real time performance, 

the order of computation is very important. The method illustrated in Figure 4 works quite 

well. The key to this method is that AO amplitudes are calculated the minimum possible 

number of times. To accomplish this the computation of the AO amplitudes is done before 

the loop over MOs and is stored in a one-dimensional array of the same dimension as the 

basis set. Then, within the loop over the occupied MOs, the MO coefficients are multiplied 

by the AO amplitudes to produce a MO amplitude. The MO amplitude is squared and 

multiplied by the MO occupation number to obtain the electron density for that orbital. The 

individual MO densities are summed to produce the total electron density. In addition to 

plain TED plots, MacMolPlt can also color map the MEP to the surface of 3D contours. To 

reduce the time required to compute the MEP the calculation is performed only on the actual 

surface points. Thus, the MEP calculation is done after the TED grid is computed, contoured 

and the contour is reduced to the unique 3D points. 

MacMolPlt also allows computation of MEP surfaces. A MEP is defined by the 

equation: 
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•-V 
AI fi.v V 

where Za is the nuclear charge on atom A centered at Ra, P^v is the density element 

corresponding to the basis functions (p^ and (p^ While this integral is not difficult or 

expensive to compute, it does depend on r and thus must be computed separately at each grid 

point. This can result in substantial calculation times for large molecules and 3D grids. 

However, the performance is quite acceptable for 2D grids and will only get better as the 

speed of CPU's increases. 

The fourth surface type supported by MacMolPlt is a simple grid read in from a file. 

Thus, it can be used to display any arbitrary property. However, because grids can be 

squared, added, and subtracted as they are read from file, the main use is for density 

differences. All surface types incorporate the ability to export grids and to synchronize grid 

parameters. Thus, it is possible to create density differences for individual orbitals (of any 

orbital type) as well as for the total electron density. 

Graphics 

The goal of the graphics in MacMolPlt is to provide visual results with sufficient 

quality to be useful, while keeping the speed high enough to provide smooth real-time model 

rotation. This goal is accomplished using two separate drawing engines. The first uses simple 

2D vector graphics to visualize molecular structures, normal modes, and 2D contour maps. 

The second uses a true 3D display to render everything available in the 2D mode plus 

complex 3D surfaces. Real time rotation is provided in either drawing mode via a virtual 3D-

trackball scheme^. 
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Figure 5 illustrates the basic 2D drawing mode, which utilizes a rendering engine 

based on 2D vector graphics which are z-buffered based on the atomic coordinates in the 

screen orientation. This engine provides high-speed graphics on virtually any computer made 

in the last ten years, while providing sufficient detail for normal modes with ball and stick 

model display. Also, due to the small size required to save vector-based graphics, it is quite 

effortless to copy and paste images into other applications for annotation or inclusion into 

larger documents. 

Figure 6 illustrates the true 3D rendering mode, which uses the QuickDraw 3D' 

rendering engine to provide true-3D display with lighting and shading effects. While this 

graphics engine does require considerably more CPU power than the vector graphics mode, it 

does run on most computers built in the last four years with no 3D hardware accelerator 

required. MacMolPlt will also automatically take advantage of any 3D hardware graphics 

accelerators available on a particular computer to provide enhanced speed and additional 

effects such as transparent surfaces. 

2D contour maps can be viewed using either display mode. The maps consist of a 2D 

grid sparming a user-defined plane. Specification of the 2D plane can be cumbersome for the 

user, thus to avoid this pitfall MacMolPlt uses the plane of the screen to define the plotting 

plane. Once the desired plane has been found, the plane's orientation can be fixed such that it 

rotates with the molecule. One advantage of this scheme is that with the plane set to the plane 

of die screen and with the ability of MacMolPlt to compute the surfaces in real time, the user 

can scan the plane through the molecule, allowing the user to locate areas of special interest 

very quickly. The plane of the screen may also be easily set to a plane defined by any three 
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atoms or defined by the cartesian axes. One time and memory saving feature is that the 

contours are displayed as the grid is contoured. Thus the individual contours are not stored. 

A 3D grid spanning a volume of user customizable size and resolution defines all 3D 

surfaces, viewable only in the true 3D mode of display. Once the grid has been computed or 

read in from a file, it is contoured into a 3D surface of constant value (an isosurface) using an 

improved marching cube algorithm.Vectors perpendicular to the surface are computed to 

smooth out solid surface display. Then the surface is submitted to the 3D-drawing engine for 

display as either a solid (opaque or transparent) or wire frame surface. The colors of the 

positive and negative contours of each surface can be set independently such that multiple 

surfaces can be distinguished from each other if displayed simultaneously. Since the grid is 

preserved, the user can easily and quickly scan the possible isosurface values to find the 

value that the user deems best. 

Animations 

One very important feature of MacMolPlt is its ability to animate computations. This 

includes the animation of normal modes as well as any multi-firame computation from 

GAMES S. However, the geometry alone does not provide enough information to truly 

understand a reaction. Other parameters are also important such as the energy (the total 

energy or the kinetic energy for DRP's), gradient, or specific bond lengths or angles. To 

provide information on these parameters MacMolPlt includes a simple graphing feature that 

can provide an indication of the relative value of the current fi-ame to the other frames in the 

animation. Because the simple graphing code is not intended for the creation of publication 

quality output, the graphed values may be exported as tab-delimited text suitable for most 
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graphing software. Since an animation is difficult to illustrate on paper a sample figure is not 

presented here, however, sample animations are available on this journal's online web site". 

The two primary examples of the utility of animation of a multiple geometry 

calculation are IRC's and DRP's. The IRC path is a minimum energy path cormecting a 

transition state to its nearest minima. Because each point is significant, it can be very 

important to view the IRC path to gain a better understanding of how a reaction proceeds. 

MacMolPlt makes viewing the entire reaction path easy by providing built in animation 

capabilities as well as the ability to splice together multiple computations (e.g. several IRC's 

for several steps in a complex mechanism) into one smooth animation. Thus an entire 

reaction sequence can be shown instead of just the stationary points, leading to a better 

understanding of the entire reaction. 

Animations are even more important for viewing the results of a dynamic reaction 

path calculation, since there are no stationary points computed. By their nature, dynamics 

calculations require the computation of a very large number of geometries. However, since 

MacMolPlt imposes no limits on the number of geometries even large nms can be 

accommodated. Also, since the DRP is often required to compute more geometries for 

numerical stability than are necessary for a smooth animation, the code can also be 

configured to skip points as the file is read in from disk. Finally the speed of the animation 

can be adjusted to suit the number of points in the animation and the user's personal taste. 

Conclusions 

MacMolPlt provides an easy to use interface for the GAMESS package offering a 

range of features appealing to the novice as well as the veteran user. While the input is aimed 
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primarily at new GAMESS users, the powerful output visualization capabilities should 

appeal to any user. MacMolPIt also bridges the need for a program which is fast enough to 

use for every computation, yet capable of producing output of sufficient quality for 

publication. MacMolPIt also supports the most popular formats for publication of results on 

the web, such as jpeg and quicklime movies. In the future, as the speed of computers and 

computational methods improves, the need for the powerful visualization techniques 

provided by programs such as MacMolPIt will only increase as the complexity of molecular 

systems studied increases. 

Availability 

MacMolPIt is available for free of charge for all users. To obtain MacMolPIt please 

refer to the web address: 

http://www.msg.ameslab.gov/GAMESS/Graphics/MacMolPlt.shtml. Complete system 

requirements, feature lists, as well as the program itself can be found on that site. 
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m i namlOiLOG Input Builder 

Required Groups 

Optional Groups 

MO Guess 
Hess. Opts. 
NffscRiog. 
SO^ Options 

Main Calculation Parameters 

Basis 
r 
i 

Control t 

Data i 

System 
i 

1 

Run Type: | Hessian ^ | • Use MP2 

CI: f None ^ | 

1 

SCFType: RHF 

Ijocalization Method: None 

Molecule Charge: | o  |  

Multiplicity: 11 | 

Exe.Type: f Normal Run 1 

Max4t SCF Iterations: 30 

Use Defaultsl | Revert 

Write File~l f Summary | Cancel j [ Done | 

Figure 1; GAMESS input generator 
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i exam06J.0G Surfaces i 

2D Orbital MO# 3 Visible 
[^Visible 
• All Frames 

Select Orbital Set: Natural Orbitals 13 
Number of 
grid points: 

Max # of contours: 

Max contour value: 

25 

1.00 
Select Orb: . Orbital vector: 

Atom Orbital Coef 
1 2.000 • 1 C S 0.000 
2 2.000 S 0.000 
3 2.000 Px 0.536 
4 1.915 Py 0.000 
5 0.005 P^ 0.000 

2 H S -0.471 
3 H S 0.471 

• 

Q Use plane of screen 
0 Show zero contour 
0Dash - Contours 
• Reverse Phase 

Orbital 
Colors: 

SetP... ) [ Set Plane... | 

Export... I [[ Update | 

2D Orbital MO # 3 Visible Add... I 

Delete | 

Figure 2: Orbital surface options 



www.manaraa.com

97 

Figure 3; 2D Orbital contour map for CHi 
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Locp over grid points { 

Locp over basis functions (or PDs) { 

Ccnpute and store PO anplitudes 

} 

DensitySum = 0.0; 

Locp over occnjpied MDs { 

lODensity = 0.0; 

Locp over basis functions { 

MDDensity += MXoefficient [I] * AQAnplitude[I]; 

} 

DensitySum += MXensity * MDDensity * MDOcci^pation; 

} 

Grid[n] = DensitySum; 

} 

Figure 4; Pseudocode for fast generation of a TED grid 
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Figure 5: Basic 2D drawing illustrating the molecular structure of a transition state with its 
corresponding normal mode 
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Figure 6: True 3D display utilizing the QuickDraw 3D graphics library 
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CHAPTER 5: FAST COMPUTATION OF ANALYTICAL SECOND 

DERIVATIVES WITH EFFECTIVE CORE POTENTIALS: APPLICATION 

TO SlgCjj, GE8C12 AND SN8C12 

A paper prepared for submission to the Journal of Chemical Physics 

Brett M. Bode and Mark S. Gordon 

Abstract 

An improved method is described for the computation of integrals involving effective 

core potentials. The improved method provides better scalability to higher angular momenta 

as well as improved speed. The new method is also applied to the determination of the 

minimum energy structures of SigCp, GegCp and SngCp, main group analogs of the TigCp 

compounds (known as metcars). Relative energies, geometries, and vibrational frequencies are 

reported for several novel structures. 

[. Introduction 

The use of Effective Core Potentials (ECP)' has grown rapidly in recent years as 

interest in compounds containing elements from the third and subsequent rows of the 

periodic table has increased. This increase in use has sparked a renewed interest in improving 

the efficiency of computations involving ECPs. One of the most significant factors 

influencing the performance of ECPs is the availability of analytic derivatives. Due to the 

complicated form of the ECP, it is not easy to directly derive analytic derivatives. However, 

this difficulty was overcome soon after the introduction of the ECP through the application 

of translational invariance--^ to obtain an analytic formula for the energy first derivative 
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(gradient)."* Later this derivation was extended to include energy second derivatives (hessians) 

by Komomicki et al. and has now been implemented by several groups.^-^ The result of 

these derivations are the following formulae for the energy, gradient and hessian involving 

ECPs; 

Energy E = Jlfl |(|l,) (1) 
H  V  *  '  C  '  '  

Gradient E" =2yyD/<t)"|5Vu-u(j)\ (2) 

Hessian E"'" = 2 V Y D (/ 4)°^ ^ —u6 -u5 +u5 \ 
E C P  ^  | i v  ^  C  A I  B I  B  A i  A  8 1  A  A B  /  

+  / ( j ) " y u 5  5  — u 5  — u 5  + u 5  0 ^ \ )  
\  n  ^  C  . \ I  B J  B  A l  A  B J  A  A B  V  /  

E^ refers the derivative of the energy with respect to coordinate a on center A; 0^ and ())^ are 

basis functions located on center I and (j)" is the derivative of (>,. with respect to a coordinate 

of center I: D,,„ is an element of the density matrix: u is the ECP on center C. Since the 
Hv •' c 

derivatives of gaussian type fimctions are simply linear combinations of gaussian fimctions 

with different angular momentum, these equations all represent the same basic ECP integral. 

However, a derivative of a gaussian function raises the maximum angular momentum by one 

for first derivatives and two for second derivatives. Thus, in order to compute the second 

derivative of a g-type basis function, basic integrals must be computed over h and i-type 

functions. Due to the number of integrals with high angular momenta it is important to 

compute the ECP intregrals efficiently. Since the angular portions of the ECP integrals have 

simple analytic solutions, the main difficulty in the ECP calculation is the computation of the 

radial integrals. 
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II. Background 

There are currently two methods in use for the computation of the radial integrals. 

The first is the original implementation by FCahn as described in ref. I. The second method 

was proposed by McMurchie and Davidson^ and has since been improved by several 

groups.^ However, a third method, proposed by Kolar,'® when combined with the original 

method of Kahn provides a very efficient method which easily scales to higher angular 

momenta. Our modifications to the original method of Kahn involve the solution of the 

general type 2 radial integrals given by the equation (in the notation of ref 8): 

. k  ,a)= \dr  re- '^M Jk  r)M, , (k  r )  (4) 
AmAf B Q A  A  d  

is a modified spherical bessel function of the first kind; N is defined to be the sum of the 

powers on X, Y, and Z for both gaussian centers, also referred to as K, plus the power of r 

firom the ECP projector, n,^, (which may range from 0 for s-projectors to 4 for g-projectors). 

Thus N=K+n|.,. Due to symmetry, the matching angular integrals vanish unless k+A.+>." is 

even and |X-A"|<k. Also, a recursion relationship for the radial integrals may be derived 

directly from a standard relationship of the modified spherical Bessel functions": 

Qh = Ql-z.x-^^Qi:\., (5) 
"a 

Using these relationships the number of radial integrals that must be explicitly calculated may 

be greatly reduced. In fact, the majority of the integrals involve ic=0, and X=X\ Thus 

consider: 

Qy(k ,k  .a)=\drr^ 'e-°^M,(k  r)M.{k  r)  (6) 
AA A B Q A A A i? 

It is now useful to expand the modified spherical Bessel functions using: 
* a , * 6 

= L-TCOshC.r) + —fsinh^r) (7) 
,=i -r ,= i X 
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where a and P are integer coefRcients defined in ref 11. General Q integrals then reduce to 

combinations of the following: 

P „ =  j e ' " ' s i n h ( k ^ r )  s i n h C k e r )  r °  d r  ( 8 a )  
0 

a „ =  J e " ° " s i n h ( k ^ r )  c o s h ( k B r )  r "  d r  ( 8 b )  
0 

CT ^ = f e~"^cosh(k^r) sinh(kBr) r" dr (8c) 
0 

T ^ =  f e  c o s h ( k ^ r )  c o s h ( k B r )  r °  d r  ( 8 d )  
0 

It is also convenient to make the following definitions: 

A^(c,a.)= J e""" ^x + aj^dx (9a) 

k +k 
L (9b) 

' 2 c  

Ik - Ic I 
I % (9c) 

2c 

r=i-e".' (9d) 

The above integrals then become: 

p  = r  B  - r , B  ^  ( 1 1 a )  n I n.l 2 n,2 ^ •' 

T  = r  B  + r  B  ( l i b )  n I n.l 1 n.2 
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a = r C + sign(k - k )r C 
a  I  n . I  A  B  2  n . 2  

a =r C -sign(k -k )r C 
a  I  n . I  ° A B  2  n . 2  

( l i e )  

( l i d )  

The solution of these integrals will involve three special functions: the Error function: 

2 ' _ • 
erf(x) = —p=^J"e '^dt 

the Dawson function: 

d(x) = e"" / e'^dt 
0 

(12) 

and the Hybrid Dawson-error function: 
X 

h(x) = e"^ J e'^erf(t) dt 
0 

(13) 

(14) 

III. Radial integral derivation 

Since the most important integrals have ic=0 and X=X'; let us begin by examining the 

X=A"=0 integral. 

Qao(kA'^^B'C) = J dr r""e"'^Mo(k^r)Mo(kBr) 

= J dr r "e u ^ - c r -
s i n h  ( k ^ r )  s i n h  ( k g T )  

k g r  

e a  -2 
r  "  s m h ( k ^ r ) s m h ( k B r )  

0 '^a'^b 

(15) 

=  J d r  

I 

^ A k B  

Since n,.|>0 we need integrals for n=(n|^,-2) > -2. Sinec p = Tj B ^ - T, B 

Bj, J so consider B„ integrals. 

= a flmction of 
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B ^ . =  J  e " " '  | x  +  a  j ' ' d x  +  J e " " '  ̂ x - a  j " c i x  

(16) 

C ^ . =  J  e " " '  | x  +  a  j " d x -  J e " " '  | x - a  dx 

or the integrals can be combined by making appropriate variable subsitutions (t=x±a|) to give: 

B = fe-^'''-'')[e-^. + e"'=°.]t"dt 
0-' n 

(17) 

C = re-'=(''^^:)[e"^.-e-'"'.]t°dt 
0 

For n=0 both b and c are easy to solve: 

= 2 Je-"'dx = 1̂  (18a) 
0 y c 
a  

C  = 2 j e ~ " ' d x =  er f (a ' /c  )  (18b) 
0 i c 

For n > 0, differentiating eqs (16) by aj gives; 

dB 
ll± = nC (19a) 

n - l . i  
da 

dC 
^ i  =  n B  ( I 9 b )  

da 
i  

For all n, differentiating eqs (17) by a; gives: 
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dB 

da 
= 2c [C - a B 

L  n - f l . i  i  D . i  

dC 

da 
i± = 2c [ B - a C 

L  n + I . i  i  n . i _  

(20a) 

(20b) 

Now integration of (16) (using integration by parts) or by integrating (19), using Cj,(0)=0, 

gives: 
X 

B =2 ft"e-"Mt = Jl:iiB 
a.O J 2c 

B^ =Le ''''•' + a ^erf(a '\fc ) 

(2la-e) 

C =a fl 
l . i  r  

r- 1 B =_i ^ = _Lb +a C 
2c * '• 2c 

C  f Z — i  er f  (a  4c  j  =  _ L C  +a B 
'• 2c ' 2c 

Then by induction using (19) and (20) for n>2 or directly from (17) using integration by parts 

(integrate t"), we have: 

B =11Z1B +a C 
1 . 1  n - i /  I  n - I , (  

(22a,b) 

C =iLzic +a 5 
1 . 1  2 ^  n - 2 . (  /  n - l , /  

Now consider n<0: 

For n = -1 (21) may be written as: 
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dB 
+ 2ca B =2c C (23a) 

da ' 

dC 
+ 2ca C =2c B (23b) 

da ' 

First solve the homogeneous equations (RHS = 0) to give: 

B =pe-'''^ 
(24a,b) 

C =Ye-'''' 
- i . i  

Now plug these solutions into eq. 23. assuming that P and y are functions of a, and solve 

using Eq. (18): 

d(Pe )  j^2ca Pe~'" ' '  =  2c^er f (a/y fc  )  

i  

^ - 2ca Pe-"-' + 2ca, Pe''"' = 2Vc erf(a,^) 
da 

^  = 2^  ̂  e'^ 'er f fa j^  )  
da (25) 

i  

P = 2^ J Vc e'^-erffa^^) da^ 

: .B_^ = 2^e" '" '  J4c  e"" 'e i f (a^)  da 

= 2^71 h(a^^)  
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^ + 2ca ye'''"' = 2c 
da ' i c 

i  

dy - 2ca ye'''"' + 2ca ye'""' = 2 JH ^fc 
da 

i  

.̂ JL = 2̂ 'fc e'"' 
da (26) 

i  

y- 2 ̂  J 4c e'"' da 
i  

••• C ^ =2J4c e""' da 

-2^^d(a 4c)  

For n = -2 there seem to be two ways to proceed. One is to integrate Eq. (17) by parts. The 

second is to repeat the integration of Eq. (21). First consider integrating Eq. (17) (for n=-2): 

C ^ (27) 

Using integration by parts choose: 

- n r + a ' i r  I d a  -2rta l _ 

u = e  '  l e  ' -e  J,  dv  = t  'd t  (28) 

Which gives: 

+ Icae'-''"- ̂ }dt 

(  -  r ' ' " V i e - " " .  -  f - - ' " " ' . ] ! " -  J  {  -  I c e - ' " " * " ' '  [ e ^ ' ^ - e ' ' " " • ]  +  
" 0 

2ca [e'""' + e"'"". ]/dt 

( - r'  [e-'-'".- e - I c C  + 2ca B 
0  0 . 1  I  - l . i  

(29) 
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Thus the latter part is solved, but the first part is indeterminate at 0. By applying 

L'Hopital's rule the first term can be resolved to give: 

C = Aca e'^"' + 2ca B - 2cC (30) 
~ 2 . l  I  I  - I . I  0 . 1  

Now consider the second option of integrating Eq. (20). If Eq. (20a) is integrated the result is 

again Eq. (30) which provides a check for that result. If Eq. (20b) is integrated a relationship 

for B.-, j may be obtained as follows: 

d C  
zlL + 2caC =2cB 

d a  '  
{ 

^ (4ca e' '" '  + 2ca B -  2cC ) + 2ca {4ca + 2ca B — 2cC )=2cB V '  » -1 /  0 .x /  t \  /  /  -1 . ;  0 . ; /  -1 . /  
I 

2 , : dB dC ^ • 
+2c5 + 2ra ' - 2r 2± + 8c'a'e '" + 

' d a  d a  
I I 

Ac'a'B —Ac'aC =2cB 
I  - I . /  /  0 . /  - I . /  

2ca l2cC —2aB ] + 4c'a'B —Ac'aC =0 I \ 0./ I I } / - Ir 0.1 

Similarly B = 2ca C - 2cB (31) 
- 2 . 1  I  - 1 . 1  O . I  

This provides all of the integrals required for the ?i=X'=0 case, but lower values for n 

are required to compute other integrals. Using Eq. (17) (and Eq. (20) as a check) the results 

for n = -3, -4, etc can be obtained: 

B =2a-c-e-"' .+caC -  cB (32a) 
- 3 . i t  (  - 2 . 1  -  l . J  

C-3., = ca,^-2.,-cC_,, (32b) 

= 03a) 

C =Lc' 'a^e-"' ' - lcC +lcaB (33b) 
9  •  j  - 2 . 1  J  I  - J . I  
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From these we can begin to see a pattern from which the following relations may be derived: 

/  n- i \  z 2ca 
B =(l +  ( -l)'' ') I '/ R + lC (34a) 

( « - l ) ( / i - l ) /  n - l  n - l  

C  = (  1 1  i " ' ' )  C  + I ^ B  (34b) 
( « - ! ) ( « - I ) /  n - l  n - l  

Thus all of the integrails for n < 0 are easily related to n = - I and n = 0 integrals similarly to 

the relationship between n > 2 integrals and n = 0 and n = I results. So all possible integrals 

can be solved in terms of relatively few basic integrals. 

This method for the computation of the type 2 radial ECP integrals has been 

implemented into the GAMESS'- program. This improvement along with other code 

modifications has resulted in a significant speedup for the ECP portion of czilculations. Table 

1 gives some representative timings for a GcgC p T^ geometry which will be discussed in 

detail later in this paper. The timings illustrate the speedup over the older version as well as 

the parallel scalability of the ECP code. Specifically the speedups are about 5.5 for energies. 

6.0 for gradients, and close to a factor of 2 for parallel runs on two nodes. In general the 

speedup is greater for higher angular momentum functions, thus gradients and hessians have a 

higher speedup than energies. Analytic derivatives of ECP's have also been implemented 

through g-functions 

IV. Characterization of the minimum energy structures of SigC|2, GegC|2, and 

As interest in fullerenes and fullerene derivatives has grown in recent years, interest in 

the smallest fullerene like carbon cage compound, C,q, has also grown. Several recent studies 
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have examined die noinimum energy geometry of Since many of the interesting 

properties of flillerenes come from the addition or substitution of metal atoms it was of great 

interest when a class of stable 20-atom molecular clusters (8 metal atoms and 12 carbon 

atoms referred to as metallocarbohedrenes or metcars) were reported. In particular. Guo and 

coworkers have reported the formation of MgCp, where M=Ti, V, Zr, Hf. Mo, or W, 

through the reaction of laser vaporized titanium with a variety of hydrocarbon gases.This 

discovery has prompted several theoretical studies attempting to predict the structures and 

energetics for a variety of transition metal metcars.'^ Most of these studies have considered 

two types of arrangements for the minimum energy structure. The first is a distorted 

dodecahedral structure in Tj^ symmetry and the second is a capped tetrahedron in T^ 

symmetry. Theoretical studies on TigC,, have indicated that the T^ geometry is much more 

stable.'^ 

Considering the similar electronic structure of main group elements such as silicon, 

germanium, and tin and transition metals titanium, zirconium, and hafnium (s-p- versus s-d") 

it is reasonable to expect similar compounds to exist. Two studies have considered SigC,,;'^ 

however, in both of these die only geometry considered was T|^. Thus this work will examine 

silicon, germanium and tin metcars, with emphasis on the minimum energy structure and 

lowest electronic states for each system. 

V. Computational Methods 

All structures were initially optimized using the restricted Hartree-Fock (RHF) level 

of theory for closed shell states and the restricted open shell Hartree-Fock (ROHF) level of 

theory for open shell electronic states. Since many of the low lying electronic states have 
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many unpaired electrons in nearly degenerate orbitals, it is likely that a multiconfigurational 

treatment is needed. Thus, all structures were then fully reoptimized using 

multiconfigurational self-consistent field (MCSCF)'^ waveflmctions. The MCSCF active 

space used for all systems was an (8,8) active space. This active space distributes 8 electrons 

among 8 orbitals with appropriate consideration of spin and symmetry. This choice allows a 

full description of all open shell orbitals for all spin states through the nonet (8 unpaired 

electrons) spin state. Due to the substantial difference in bonding between the different 

isomers it is not possible to make the active space contain exactly the same orbitals. 

However, the active space was the same size for all systems and therefore the results are 

directly comparable. The specific active spaces used contained 8 non-bonding orbitzils for the 

Tjj isomer, 6 non-bonding plus 1 E-C bond/antibond pair for the isomer, and 6 non-

bonding plus 2 E-C-E three center bonding orbitals for the isomer. 

The basis set used was the SBKJC ECP basis set'^ on Si, Ge, Sn, and a 6-3 lG(d) 

basis set on C.-® One set of d-type polarization functions was added to each heavy atom.-' 

All structures were optimized using analytic gradients and then confirmed by computing the 

matrix of energy second derivatives, or hessian, to obtain the harmonic normal modes and 

corresponding frequencies (each minimum has zero imaginary modes). The calculated 

frequencies were also used to obtain the harmonic zero-point energies used to convert energy 

differences to 0 K enthalpy differences. 

The GAMESS'- program was used for all calculations. 
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VI. Results 

In total 4 distinct geometries were considered. In addition to the expected and 

geometries two other geometries were also located, one with D, symmetry and one with 

symmetry. In each case, the geometry was determined only for the lowest energy spin state 

for that symmetry. All four geometries are illustrated in Figure I with numbers indicating the 

symmetry unique atoms. The unique bond lengths are listed in Table 2 for each molecule at 

both RHF/ROHF and MCSCF levels of theory. Note that metal-metal interatomic distances 

are given for reference even though there are no metal-metal distances short enough to be 

considered a bond. Table 3 list the relative energies of each species at the RHF/ROHF and 

MCSCF levels respectively, including the RHF/ROHF zero point energy correction. The 

corresponding spin multiplicity is also listed. The absolute energies and zero point energy 

corrections as well as the complete set of cartesian coordinates are also included as an 

appendi.x to this chapter. 

From Table 3 we conclude that although there are some significant differences in the 

relative energies between RHF.-TIOHF and MCSCF levels of theory, the qualitative energy 

order is the same. The same is also true of the geometries listed in Table 2, which show only 

minor differences between the RHF/ROHF bond lengths and those optimized using MCSCF 

wavefimctions. For the Tj^ and D-, isomers which were first optimized using high-spin ROHF 

waveftmctions, the MCSCF wavefunction predicts that the lowest energy state is a low-spin 

open shell configuration with a similar number of unpaired electrons as the high-spin state. 

For comparison with the ROHF result the high-spin quintet state was also optimized using 

an MCSCF wavefunction and is listed in Table 3. The nonet state for the Tj, geometry using 

an (8,8) MCSCF wavefunction is identical to the ROHF reference and is therefore not 
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repeated in the MCSCF part of the table. 

In addition to the expected Tj, and structures. Figs, la and lb, a Dt  structure. Fig. 

Ic, similar to the T,, structure with two of the C, units twisted to a linear arrangement 

between two E atoms, and a D-,,, structure. Fig, Id, with all C-, units arranged in a linear 

arrangement between pairs of E atoms, were also found. Perhaps surprisingly, the D-,j^ 

structure is the preferred geometry for the germanium and tin systems, while the geometry 

is preferred by the silicon system. The geometry is 35-60 kcal/mol higher than the 

minimum energy geometry for each system. The T^ geometry is found to be quite high in 

energy for all three systems and hessians reveled that it is a high order saddle point with 

several normal modes which break the T^ symmtery. As the metal is changed from Si to Ge 

and Sn. the T^^ geometry becomes much less favorable, while the D-,|^ geometry becomes more 

favorable. 

Table 2 illustrates that as the metal is changed from Si to Ge and Sn the metal-metal 

(E-E) and metal-cabon (E-C) distances increase, as might be expected from the increasing 

atomic radius of the metal atom. Perhaps less obvious is the fact that as the radius of the 

metal atom increases the C-C bond distance stays the same or more often decreases. There is 

also a dramatic difference in the C-C bond distance between the four isomers. In the Tf^ 

isomer the C-C bond distance of approximately 1.34 A is characteristic of a C-C double bond. 

However, the C-C distance of 1.21 A in the isomer indicates a C-C triple bond. Thus, 

there is a significant difference in the bond character between the different isomers. These 

compare to a C-C bond distance between 1.4-1.5 A for C,q'^ and a value of 1.4A for the 

TigCp metcars.'^ 

The D, and structures have fewer E-C bonds than the T|^ structure. In the T^ 
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structure every metal atom is directly bonded to 3 carbon atoms. In the structure the 

affect of twisting 2 of the C, units is to reduce the E-C bond count on 4 of the metal atoms. 

This reduction results in an increased bond order for the affected units, as well as a small 

reduction in the bond length of the remaining E-C bonds. This effect is even greater in the 

structure where 4 of the metal atoms are directly bonded to 2 carbon atoms. The remaining 4 

metal atoms are directly bonded to only 1 carbon atom and bridge a unit. Thus, the 

reduction in the number of direct metal-carbon bonds in the D-,jj structure results in an 

increased bond order for the C-C bonds and well as a small increase in the bond order for the 

remaining metal-carbon bonds. 

The vibrational frequencies with significant infrared intensities are listed in Table 4. A 

simple description is also listed for each firequency, but since the majority of the frequencies 

involve the entire cluster it is necessary to view animations of each vibration to fully 

understand the motion of the molecule. Except for two systems where a C-, stretch is infrared 

active, all of the listed fi-equencies involve at least four atoms, such as E-C-C-E stretches, and 

many involve the entire cage. Most of the low frequency vibrations involve the motion of the 

C-, as a unit, either in a twisting motion about the center of the C-C bond or as concerted 

motion in one direction. 

VII. Conclusions 

In this paper we have presented an improved method for the computation of integrals 

involving effective core potentials. This improved method has been implemented into the 

GAMESS program and has been shown to significantly reduce the computational cost of 

ECP integrals. The improved program has been applied to the determination of the minimum 
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energy structures of silicon, germanium, and tin analogs of the TigCp metcars. In addition to 

the two expected structures, two novel previously unreported arrangements have also been 

predicted. 
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Table 1: ECP timings (in CPU seconds on an IBM RS/6000 m370), other one and two 

electron integral timings included for comparison purposes 

step old code new code new code on 2 nodes 

Energy le-ints. 6.0 6.0 4.0 

Energy ECP ints. 218.0 39.0 21.9 

Gradient le- ints. 45.6 45.6 22.3 

Gradient ECP ints. 1178.8 196.0 90.2 

Gradient 2e- ints. 2523.4 2523.0 1253.8 
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Table 2: Optimized bond lengths for Hartree-Fock (HF) and MCSCF wavefucntions 

SigC 
1 2  

GcgC 
1 2  

SngC 
1 2  

Bond HF MCSCF HF MCSCF HF MCSCF 

T|, Geometry 

E-E 3.085 3.088 3.193 3.196 3.698 3.645 

E-C 1.911 1.913 1.986 1.986 2.334 2.302 

C-C 1.351 1.350 1.339 1.338 1.273 1.283 

Tjj Geometry 

E,-E2 3.345 3.503 3.780 

Ej-C 1.967 2.075 2.269 

E2-C 2.402 2.514 2.695 

C-C 1.256 1.253 1.252 

D2 Geometry 

E1-E2 3.589 3.606 3.676 3.717 3.930 3.926 

J
T

I
 

1 m
 

1
0

 3.052 3.052 3.186 3.196 3.670 3.700 

E, -C,  1.877 1.879 1.963 1.976 2.291 2.280 

E1-C2 1.931 1.940 2.015 2.047 2.359 2.372 

E,-C3 1.892 1.879 1.969 1.975 2.304 2.294 

E2-C, 2.935 2.945 2.942 2.929 2.786 2.775 

E2-C2 1.954 1.951 2.044 2.031 2.272 2.281 

E2-C3 1.945 1.945 2.040 2.055 2.278 2.274 

c , -c ,  1.215 1.214 1.217 1.218 1.231 1.231 

C2-C2 1.343 1.340 1.329 1.324 1.276 1.272 

C 3 - C 3  1.352 1.353 1.337 1.322 1.279 1.277 
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Table 2 Continued. 

SigCj-^ J Sn^Ci*^ 

Bond HF MCSCF HF MCSCF HF MCSCF 

D2h Geometry 

E1-E2 3.217 3.217 3.372 3.394 3.661 3.691 

E, -C,  1.866 1.866 1.956 1.962 2.165 2.175 

E1-C2 1.877 1.877 1.954 1.954 2.134 2.134 

E2-C1 2.116 2.116 2.250 2.280 2.449 2.487 

E2-C3 1.865 1.865 1.942 1.942 2.128 2.128 

c , -c ,  1.283 1.283 1.272 1.261 1.264 1.253 

C2-C2 1.208 1.208 1.208 1.208 1.211 1.211 

C 3 - C 3  1.206 1.207 1.207 1.207 1.211 1.211 
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Table 3: Relative energies (kcal/mol) 

SigC 12 GegC| 12 StigC 12 

Geometry Energy State Energy State Energy State 

RHF or ROHF Energies 

a Th 0.0 'Ag 75.5 ^Ag 161.9 'Ag 

b Td (a) 259.8 'A, 172.7 'A, 123.1 'A, 

c D2  49.4 5A 57.7 5A 35.9 5A 

dDoh 47.1 'Ag 0.0 •Ag 0.0 •Ag 

MCSCF Energies 

a T h  0.0 •Ag 88.5 'Ag 165.0 'Ag 

b Td (a) 

C  Dt  39.6 'A 59.9 •A 51.6 'A 

c D ,  50.1 5A 74.7 5A 54.7 582 

d D2h 46.5 0.0 •a g 0.0 'Ag 

(a). Saddle point at the RHF level of theory 
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Table 4: Vibrational Frequencies with an infrared intensity greater than O.l Debye2/(amu A.-) 

SigC 12 GcgC 12 SngC 12 

Geometry Frequency Intensity Frequency Intensity Frequency Intensity type  

aTh 499 1.4 484 4.3 403 cs 

499 1.4 484 4.3 403 :)o cs 

499 1.4 484 4.3 403 
-> j . jy  cs 

568 4.1 649 0.2 567 0.4 cr 

568 4.1 649 0.2 567 0.4 cr 

568 4.1 649 0.2 567 0.4 cr 

808 3.2 690 0.8 ca 

808 3.2 690 0.8 ca 

808 3.2 690 0.8 ca 

1587 0.2 c2 

1587 0.2 c2 

1587 0.2 c2 

cD,  160 0.5 135 0.2 103 0.1 cb 

166 0.5 144 0.2 cb 

279 0.5 205 0.8 138 0.3 cb 

282 0.1 216 0.5 187 0.3 cs 

317 0.2 216 0.1 195 0.8 cb 

330 0.2 247 0.8 cs 

356 0.2 277 1.0 cr 

360 0.2 278 0.6 cs 

374 0.2 373 0.6 280 0.3 cr 

424 0.6 391 0.4 299 0.7 cs 

475 2.0 406 2.1 332 0.7 cs 

497 1.3 408 0.2 cr 
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SigC 12 GcgC 12 SngC 12 

Geometry Frequency Intensity Frequency Intensity Frequency Intensity type  

c D2 com. 528 1.5 428 0.8 337 1.0 cr 

553 5.0 453 2.1 358 1.4 cs 

457 0.2 cs 

458 I . l  391 4.6 cs 

626 0.2 546 0.4 416 0.6 cr 

641 1.2 558 2.4 450 0.2 cr 

678 2.3 576 4.0 452 2.0 cs 

687 0.6 594 1.1 cs 

604 0.9 cr 

619 0.7 cr 

699 0.2 cs 

715 4.0 686 1.3 454 1.3 cs 

735 0.7 ca 

739 2.5 689 1.9 471 0.6 ca 

805 0.5 479 7.9 cs 

822 5.8 737 0.8 492 0.6 cs 

2295 0.1 1620 0.2 c2 

262 0.1 233 0.4 188 0.8 eb 

279 0.5 240 0.4 199 0.6 eb 

307 0.7 241 0.2 194 0.3 er 

246 0.2 es 

269 0.2 es 

440 0.6 382 0.3 305 0.3 cr 

538 4.5 464 3.3 370 3.4 cr 

571 0.6 484 12.7 423 8.5 es 
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Table4: Continued. 

SigC 12 GegC 12 SngC 12 

Geometry Frequency Intensity Frequency Intensity Frequency Intensity type  

d D2h cont. 606 21.3 515 0.7 440 0.6 cr 

723 0.7 600 0.2 es 

746 24.2 612 19.6 526 14.7 es 

780 32.2 653 29.0 584 30.7 es 

Codes: cs = symmetric cage stretch, ca = asymmetric cage stretch, cb = cage bend, cr = C, 

rocking motion, c2 = C-C bond stretch, eb = E-C-C-E bend, er = E-C-C-E rock, es = E-C-C-E 

stretch 
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a: Th symmetry 

b: Td symmetry 

Figure 1: Structiires for EgC|2 (where E=Si, Ge, Sn) 
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c: D-> Svmmetrv 

©—©• 

d: D2h symmetry 

1: Continued 
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Appendix 

RHF/ROHF absolute energies and zero point energy corrections (in Hartrees) 

Geometry 

SigC,2 

Energy State 

GcgCj 

Energy 

12 

State 

SngC 

Energy 

12 

State 

aTh 

bTd 

-483.949504 

-483.509237 

'Ag 

'A,  

-483.574953 

-483.397641 'A,  

-480.124207 

-480.171753 

'Ag 

'A,  

c D2 -483.862607 5A -483.596760 5A -480.316530 5A 

d D2h -483.858328 

RHF/ROHF Zero Point Energy 

'Ag -483.682837 -480.374306 'Ag 

0.085117 0.073645 0.063994 

bTd 0.058792 0.051104 0.049686 

cD,  0.076872 0.066965 0.055471 

d 0.069066 0.061137 0.056074 

MCSCF absolute energies 

GegC|2 Sn^CT 1 

Geometry Energy : State Energy State Energy State 

a Th -483.957271 'Ag -483.585616 -480.153802 

bTd 

cD,  -483.885886 'A -483.624615 •A -480.325965 •A 

C Dt -483.869177 5A -483.601008 5A -480.321024 5B2 

-483.867054 -483.714186 -480.408841 

Optimized Geometries: 

RHF/ROHF Geometries (symmetry unique atoms only): 

SigC,2 
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SILICON 14.0 1.5423678102 1.5423678102 1.5423678102 

CARBON 6.0 .0000000000 .6754024883 2.2631670295 

GCgC,, 

GERMANIUM 32.0 1.5964372281 1.5964372281 1.5964372281 

CARBON 6.0 .0000000000 .6697441419 2.3294671655 

SngC,2 

TIN 50.0 1.7443320473 1.7443320473 1.7443320473 

CARBON 6.0 .0000000000 .6682609544 2.5156684452 

bT,  

SigCj, 

SILICON 14.0 1.5463130830 1.5463130830 1.5463130830 

SILICON 14.0 1.7823778604 1.7823778604 -1.7823778604 

CARBON 6.0 0.4439701726 0.4439701726 -2.3171931689 

GcgCiz  

GERMANIUM 32.0 1.6318367153 1.6318367153 1.6318367153 

GERMANIUM 32.0 1.8569797895 1.8569797895 -1.8569797895 

CARBON 6.0 .4428341687 .4428341687 -2.4086432008 

SngC[2 

TIN 50.0 1.7676276160 1.7676276160 1.7676276160 

TIN 50.0 1.9980641603 1.9980641603 -1.9980641603 

CARBON 6.0 .4426889385 .4426889385 -2.5554066579 

cD 2  

SigCj2  
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SILICON 14.0 1.4413793331 -1.5744365460 -1.6382269639 

SILICON 14.0 -1.8087435124 -1.4418081497 -1.9296506844 

CARBON 6.0 -.0690704932 -.6721928278 -2.3333232192 

CARBON 6.0 2.0760046002 .0279466508 .6708359441 

CARBON 6.0 .4508681251 2.5876345040 .4070529028 

GegCi2  

GERMANIUM 32.0 1.5139018204 -1.6017021240 -1.7067478937 

GERMANIUM 32.0 -1.8406878963 -1.5577146367 -1.9546366902 

CARBON 6.0 -.0659726021 -.6654518149 -2.4181890710 

CARBON 6.0 2.1477938074 -.0020432112 .6647011537 

CARBON 6.0 .4498202192 2.6204305616 .4098284670 

SngC|2 

TIN 50.0 1.9030985145 -1.8613422649 -2.0251536432 

TIN 50.0 -1.7891100376 -1.8048543891 -1.9030349949 

CARBON 6.0 .0378767526 -.6383256870 -2.6043459653 

CARBON 6.0 2.3341359423 .0023409940 .6380446805 

CARBON 6.0 .4594351979 2.6055536774 .4099426848 

dD2h 

SigCjz  

SILICON 14.0 .0000000000 2.5069667330 -2.4758683579 

SILICON 14.0 -2.0159764165 .0000000000 2.4562581285 

CARBON 6.0 -2.2271124123 .0000000000 .6028620530 

CARBON 6.0 .0000000000 -.6414837498 -2.4584753441 
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CARBON 6.0 .0000000000 -2.6464440935 -.6038382152 

GcgCp 

GERMANIUM 32.0 .0000000000 2.5914352541 -2.5542715779 

GERMANIUM 32.0 -2.1581351664 .0000000000 2.5371502741 

CARBON 6.0 -2.3407535032 .0000000000 .6035794387 

CARBON 6.0 .0000000000 -.6358001998 -2.5428450726 

CARBON 6.0 .0000000000 -2.7089715689 -.6040527553 

SngC|2 

TIN 50.0 .0000000000 2.7949635620 -2.7345325228 

TIN 50.0 -2.3649643399 .0000000000 2.7231187797 

CARBON 6.0 -2.5727569684 .0000000000 .6054089755 

CARBON 6.0 .0000000000 -.6318494280 -2.6569537579 

CARBON 6.0 .0000000000 -2.9436686666 -.6054472592 

MCSCF (8,8) optimized geometries: 

aTh 

SigCi2  

SILICON 14.0 1.5376486991 -1.5393914780 -1.5439440827 

CARBON 6.0 .0000000000 -.6752683316 -2.2670324329 

GERMANIUM 32.0 1.5906092780 -1.5966925975 -1.6000840726 

CARBON 6.0 .0000000000 -.6682670768 -2.3397293139 

SflgC j2 

TIN 50.0 1.822586 1.822586 1.822586 
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CARBON 6.0 0.00000 0.641930 2.587048 

SigCj2  

SngCi2  

cD2 

SigCi2  

SILICON 14.0 1.4222152004 -1.5682583592 -1.6513226343 

SILICON 14.0 -1.8089774725 -1.4464750635 -1.9316973553 

CARBON 6.0 -.0746556150 -.6725372815 -2.3506933716 

CARBON 6.0 2.0580784609 .0200578012 .6697290571 

CARBON 6.0 .4441102573 2.5901731744 .4140916035 

GegC!2 

GERMANIUM 32.0 1.4931082254 -1.5936564210 -1.7571177022 

GERMANIUM 32.0 -1.8363779118 -1.5755934479 -1.9413459302 

CARBON 6.0 -.0831557577 -.6568920212 -2.4822997513 

CARBON 6.0 2.1032394385 -.0188802377 .6618426979 

CARBON 6.0 .4346720428 2.5965074106 .4261300488 

SiigC 12 

TIN 50.0 1.8928276262 -1.8778874910 -2.0280701618 

TIN 50.0 -1.7691394320 -1.8172583608 -1.8958593449 

CARBON 6.0 .0470767321 -.6368216405 -2.5882971629 

CARBON 6.0 2.3144696696 .0048341509 .6358241626 



www.manaraa.com

134 

CARBON 6.0 .4534645256 2.6067521464 .4164415037 

SigC,2 

SILICON 14.0 0.0000000000 2.5068567447 -2.4758375486 

SILICON 14.0 -2.0162703793 0.0000000000 2.4563043903 

CARBON 6.0 -2.2269435072 0.0000000000 0.6033705940 

CARBON 6.0 0.0000000000 -0.6414294394 -2.4584868108 

CARBON 6.0 0.0000000000 -2.6464873054 -0.6038315139 

GERMANIUM 32.0 2.5541997031 -2.5922701325 0.0000000000 

GERMANIUM 32.0 -2.5378326988 0.0000000000 -2.1909107786 

CARBON 6.0 -.6035497974 0.000000000 -2.3654757549 

CARBON 6.0 2.5383535464 .6305325057 0.000000000 

CARBON 6.0 .6039457773 2.7091963307 0.000000000 

SngC 12 

TIN 50.0 .0000000000 2.7998312777 -2.7340081524 

TIN 50.0 -2.4053228699 .0000000000 2.7239144412 

CARBON 6.0 -2.6051491135 .0000000000 .6053502348 

CARBON 6.0 .0000000000 -.6263984078 -2.6445859968 

CARBON 6.0 .0000000000 -2.9509433784 -.6053463166 
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CHAPTER 6: CONCLUSIONS 

In this chapter the overall results of each project presented in this dissertation are 

summarized including: the theoretical determination of the minimum energy reaction 

pathway for the titanium catalyzed hydrosilation reaction (Chapters 2 and 3), the theoretical 

determination of the minimum energy structures and lowest energy state of a set of main 

group analogs to metallocarbohedrenes (Chapter 5), a new method and implementation for 

computing integrals involving Effective Core Potentials (Chapter 5), and finally a new 

graphical user interface for the GAMESS program (Chapter 4). 

Chapters 2 and 3 describe the minimum energy reaction path for several titanium 

catalyzed hydrosilation reactions. In chapter 2, the simplest model system was considered 

using hydrogen atoms for all substituent atoms. In chapter 3 the experimental systems were 

considered by adding chlorines and cyclopentadienyl rings to the model system. Overall, the 

model system presented in chapter 2 was very successful in describing the minimum energy 

reaction path for the experimental system at a much lower computational cost than the 

experimental systems. 

The most important points along the minimum energy path were described quite well 

by the model system. In particular, all reaction systems studied exhibit no overall barrier in 

contrast to the large (>50 kcal/mol) barrier for the uncatalyzed system. This is largely due to 

the ability of titanium to insert into the carbon-carbon double bond to form a very low energy 

complex. However, due to titanium's ability to insert into bonds, particularly Si-H bonds, 

there were several significant differences between the model system and the experimental 

systems. These differences were mostly a result of the fact that hydrogen does not fully 

model either the electronic or the steric effects of either chlorine or a cyclopentadienyl ring. 
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However, with the inclusion of the full experimental substituents, the final reaction system 

studied is expected to accurately predict the minima and energetics of the experimental 

reaction system. While the basic reaction path has been determined there are several areas 

available for future study. These include examining the basic reaction path using dynamics 

calculations to better determine the barrier heights, particularly in the portion of the reaction 

path around the first transition state. In addition, other experimental reaction systems could 

be studied by using substituents other than hydrogen and chlorine and catalysts other than 

divalent titanium. 

While working on the hydrosilation reaction, it became clear that the existing 

visualization tools were inadequate for visualizing the results of a complex reaction. Chapter 

4 describes the MacMolPlt program that was written to fill this need. MacMolPlt provides all 

users with the ability to visualize complex systems either through static images or via 

animations of reactions and molecular vibrations. In addition, all of the most useful surface 

types, including orbitals, total electron densities, molecular electrostatic potentials and 

density differences, can be computed directly by MacMolPlt. Thus, MacMolPlt greatly 

simplifies visualizing the output from quantimi chemistry applications such as GAMESS, by 

removing steps such as conversion of the output of one program into the input for the ne.xt 

program. In addition, high quality 2D and 3D graphics are produced through use of graphics 

libraries built into the system software. Thus, MacMolPlt is fireely distributed worldwide 

without requiring the user to purcheise any third party software. This has made MacMolPlt 

popular for use in teaching chemistry in student computer labs where the budget for software 

is often quite small. In addition the powerful animation and surface visualization features 

have proven useful to even the most experienced quantum chemist. 
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While the existing program performs well, there is plenty of room for improvement. 

Future enhancements may include an improved graphics engine to improve many areas of 

visualization. Additional file parsing code to allow output from other quantum chemistry 

programs such as, Gaussian 9x or ACES 11 to be read in as easily as it currently is to read 

GAMESS output. Enhancements to the GAMESS input generator would also be useful to 

allow users to create complete input files for even complicated calculations. In addition, the 

code could also be ported to other operating systems to allow more users to take fixll 

advantage of MacMolPlt's feature set. 

One point illustrated nicely in Chapter 3 was the effectiveness of Effective Core 

Potentials (ECP's) at reducing the cost of a calculation without reducing the accuracy. 

However, it also illustrated where improvements were needed. The derivation and 

implementation of these improvements is described in chapter 5. At the core of these 

improvements is an improved method for computing the ECP integrals which is not only 

faster (by a factor of 6), but also scales to higher angular momentum. This is particularly 

important since it is often necessary to include basis flmctions with higher angular momenta 

than the highest occupied atomic orbitals to allow for polarization of bonds and lone pairs. 

Thus, the inclusion of the f and g-type basis function capability into GAMESS allows more 

accurate calculations on elements in the fourth and lower rows of the periodic table, 

particularly for the rare earth elements which include occupied f-orbitals. Inclusion of higher 

angular momenta is also important in the computation of analytic derivatives of the energy 

since the angular momentum is increased by one for first derivatives and two for second 

derivatives. This improvement in the computation of the integrals has also allowed for the 

inclusion of analytical second derivatives making the computation of vibrational frequencies 
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more accurate and much faster. Thus, the inclusion of the improved ECP integral package 

has greatly improved the performance and usefulness of computations involving ECP basis 

sets. 

The value of ECPs was also demonstrated in chapter 5 through their use in 

determination of the various minima for Si, Ge, and Sn analogs of the metallocarbohedrenes 

(metcars). These systems can be represented by EgC 12 (where E = Si, Ge, or Sn) and were 

generally thought to have a cage-like structure similar to C20, the smallest cage-like fullerene. 

ECP's allowed the exploration of many possible structtores and made computational cost of 

replacing Si with Ge, or Sn negligible since all three compounds have the same number of 

valence electrons and the same size basis set. The results of these calculations produced some 

unexpected minima that do not have a very similar appearance to the expected cage-like 

structure. In particular, two low energy minima possessing a symmetry of Dt and Dzh were 

found. In addition one of the expected structures, possessing Tj symmetry, was found to be a 

high order saddle point. For the tin and germanium compounds, the Dih structure was found 

to be the global minima. Geometries, energy differences and vibrational frequencies were 

also reported. Future work will look for these new types of structures in the transition metal 

based metcars such as TigC 12, as well as exploring the stability of each of the structures 

presented in this study. 
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